
154

Noah Molder is a double major in Mathematical Sciences and Film & Vid-
eo Production at the University of Memphis, graduating in the spring of
2024. He has earned the University Honors with Thesis, Honors in Math-
ematical Sciences, and Undergraduate Research Scholar designations,
among other awards and honors. Following graduation, he will stay at the
University of Memphis to complete his second year of the ABM program
to earn an MS degree. He is incredibly thankful to Dr. Thomas Hagen, un-
der whom he completed this research, for all the wonderful opportunities
and advice he has offered.

155

Noah Molder
The Nontransitive Dice: New Results for a Statistical

Paradox in a Game of Chance

Faculty Sponsor
Dr. Thomas Hagen

156

157

Abstract

Given three dice, can we place the numbers 1 through 6 on the dice, al-
lowing repetitions, so that after a first player chooses one die of the three,
the second player can always choose a die with a higher probability of
rolling a greater number from the remaining two? If so, is it possible to
optimize the chances of winning? Here, we have discovered the “best” set
of so-called nontransitive dice under our conditions and using our
specific choice of meaning for “best,” which indeed optimizes winning
chances. This research project draws on techniques from probability
theory, combinatorics, complexity theory, game theory, and scientific
computing. The topic falls in the category of nontransitive games,
a research area in Mathematics and Economics, and combines theoretical
and practical methods. This research was completed in collaboration with
Dr. Thomas Hagen and Tyler Owens.

158

The Game

Imagine you and an opponent are playing a game consisting of three 6-sid-
ed dice. To begin, you will place the numbers 1 - 6 on the three dice in
any way you like, allowing repetition. For example, you could create a die
that is all ones, denoted as (1,1,1,1,1,1), or perhaps just the even numbers,
(2,2,4,4,6,6), or even a random mix, maybe (2,3,3,4,4,5).

Figure 1. Example Dice Nets

It is important to note here that the placement of these numbers on a die
does not matter. For example, the two dice (2,2,3,3,3,6) and (3,6,2,3,2,3)
are equivalent in our game. To avoid double counting, we only accept dice
whose sides are labeled in non-decreasing order. This means we will only
accept the first of these two equivalent dice because the numbers do not
decrease from left to right as they do in the second. The four dice we have
named so far, as well as the other 458 dice that are possible under these
conditions, are perfectly valid for the game. Now that you have created the
three dice, your opponent will choose one of them, and you will choose
one of the remaining two. You each roll your die, and whoever rolls a high-
er number is the winner.

The game seems quite simple at first, but let us put some money on it.
Let us say that you and your opponent both wager a dollar each time you
roll the dice. If you just want to make sure you do not lose, you could make
all of them normal 6-sided dice, (1,2,3,4,5,6), and things would remain
relatively even. But, if you want to really win, you will have to employ
some sort of strategy.

159

So, what might you try? Perhaps you try to create one die that is
stronger than the other two. This could work as long as your opponent does
not choose the die that is obviously better, which would be unusual. So,
perhaps you make two dice that are strong and leave one to be weak. Then
you and your opponent both have strong dice, and things are back to being
equal again. You may begin to wonder if there is any way you can guar-
antee that, over time, you will win big or if this all must be left to chance.
As it turns out, you can ensure that you will win, no matter the choice of
your opponent, thanks to a paradox of probability known as “nontransitive
dice”.

Exploring Nontransitivity

Before we take a look at nontransitivity and nontransitive dice, we should
first understand transitivity. Transitivity is present in a majority of the re-
lations we see day-to-day, which means it is very intuitive and, by asso-
ciation, is the reason that nontransitivity tends to be counterintuitive. As
an example, let us take three people named Adam, Bob, and Charlie, and
look at their heights. When we stand Adam next to Bob, we see that Adam
is taller. When we stand Charlie next to Bob, we see that Bob is taller. By
taking just these two comparisons, we know who of Adam and Charlie will
be taller without ever standing them next to each other. Adam is taller than
Bob who is taller than Charlie. So, Adam must be taller than Charlie. This
is true because “taller than” is what is called in mathematics a ‘transitive
relation’. If “taller than” were nontransitive, we would not be able to say
anything about Adam and Charlie solely through their comparisons with
Bob. You may now be thinking, well then, is not every relation transitive?
They are not, but to see an example, we will have to do a bit of abstraction.

Considering that we are working with a game of dice, try to think
of some sort of game that could be nontransitive. Perhaps a sport comes
to mind. Let us take three baseball teams: the Angels, the Braves, and the
Cubs. They play three games: the Angels beat the Braves in the first, and
the Braves beat the Cubs in the second. We will use the symbol “≻” to
denote that one team beats another; that is to say that “i ≻ j” will mean that
i beats j. Referring to each team by the first letter of its name, the results
of the first two games will look like A ≻ B and B ≻ C. If this relationship
were transitive then the Angels would certainly beat the Cubs in the third
game, but this is not necessarily the case. A ≻ B ≻ C may be true, but it
does not have to be.

160

But, there are many variables involved in a sports game. So, let us try
something a bit more concrete and familiar. How about a game of Rock,
Paper, Scissors? As we all know, rock beats scissors, R ≻ S, and scissors
beats paper, S ≻ P. If transitivity were true for this relation, we would
have R ≻ S ≻ P, but that is not the case (if it were, you could never lose
by choosing rock every round). P ≻ R is true, meaning that Rock, Paper,
Scissors is an example of a nontransitive game. The winning results in the
game form a cyclical relationship, which we refer to as a nontransitive
loop. This is the relationship we want to replicate with our dice.

Figure 2. Rock, Paper, Scissors Nontransitive Loop
From Enzoklop, [1]

Nontransitive Dice

While our dice game can be modeled closely after Rock, Paper, Scissors,
there is one crucial difference. In Rock, Paper, Scissors, you and your op-
ponent must make your choices at the same time, but in our dice game,
this is not how we play. Recall that your opponent will select a die first,
and then, knowing what they have chosen, you make your choice. Imagine
knowing that your opponent has chosen rock and then getting to pick sec-
ond. It is up to you to choose paper (in that example), but knowing your
opponent’s choice should ensure that you never lose. In our game, you will
know your opponent’s choice. So, as long as you choose your die correct-
ly, you will always come out on top.

161

Figure 3. Three Dice Nontransitive Loop

With this in mind, we can try to create a set of nontransitive dice. Through
the simple but lengthy process of trial and error, the set that I found
when the problem was first posed to me contains dice represented by: A -
(2,2,3,5,5,6), B - (2,3,4,4,5,5), and C - (3,3,3,4,5,5).

Figure 4. Nets of Nontransitive Dice Set

To check that these three dice truly form a nontransitive set, we have to
compare each die with every other die. In each comparison, since there are
6 ways one die could land and 6 ways the other die could land, we have 6
x 6 = 36 possible outcomes. We will check what happens in each one of
these cases, as in, we will compare one face of a die with each face of an-
other die to see when it wins (when its number is greater than the number
on the other die) and then repeat with each face of the first die. The number

162

of times a face beats a face of the other die will be that face’s score, and we
will add all of these scores together to get the die’s total score. Score here
is the same as the number of times out of 36 possibilities that a die will roll
a higher number; thus, when we have compared two dice with each other,
the one with the higher score will be declared the winner.

In general, the process of comparing two dice is as follows:
Consider dice A and B, A with sides ai and B with sides bj where 1 ≤ i ≤ 6
and 1 ≤ j ≤ 6. Compare each ai with each bj. If ai > bj: Score(A) increases
by 1. If ai < bj: Score(B) increases by 1. If ai = bj: no score increases. Then,
compare Scores. If Score(A) > Score(B): A wins. If Score(A) < Score(B):
B wins. If Score(A) = Score(B), neither wins. It is also true that if
Score(A) > 18 or Score(B) > 18: that die will win (since 18 = , meaning
the die wins in over half the cases).

Looking back at my dice set, let us begin with checking A and B. If
a 2 is rolled on A, it cannot beat B no matter what happens since there are
no 1s on B. The same is true for both 2s on A, so these faces earn scores
of 0. If A rolls a 3, it wins in the one case that B rolls a 2, so it receives a
score of 1. The two 5s on A beat the 2, 3, and 4s on B, so they get scores of
4. Lastly, since there are no 6s on B, the 6 on A beats all six faces of B, so
it gets a score of 6. Adding these scores together: 0+0+1+4+4+6=15, so in
the match of A vs. B, A scores a 15.

Now let us see how B stands against A. B’s 2 face scores 0, the 3 face
scores 2, the 4 faces score 3, and the 5 faces score 3. So, 0+2+3+3+3+3=14,
which means B’s score is one less than A’s score in A vs. B. So, A ≻ B.
Now we have to check B vs. C and A vs. C. The scores from here on will
be left for the reader to verify. In B vs. C, B scores a 14 and C scores a 13,
so B ≻ C. In A vs. C, A scores a 14 and C scores a 15, so C ≻ A. Let us
assume this set is transitive and see if it holds. Taking the first two results,
A ≻ B and B ≻ C, we would be able to say that A ≻ B ≻ C which would
mean A ≻ C, but we know that C ≻ A, so this set is nontransitive.

Another set of nontransitive dice, found by Tyler Owens, consists of
A - (1,1,4,4,5,5), B - (2,2,3,3,3,4), and C - (1,2,2,2,6,6). Our verification
process for this set will be exactly the same. In A vs. B, A scores a 20 and
B scores a 12, so A ≻ B. In B vs. C, B scores an 18 and C scores a 12, so
B ≻ C. In A vs. C, A scores a 16 and C scores an 18, so C ≻ A. Again we
see that A ≻ B, B ≻ C, but C ≻ A. So, this set is, in fact, nontransitive.
While these sets are both nontransitive, they are not equal in all regards.
You may notice, the scores in each match are much closer in my set than

36
2

163

in the Owens set. The difference between the two scores in a given match
will be called the “win difference”. All of the win differences in my set are
1, while the Owens set has win differences of 8, 6, and 2. In theory, playing
with either set will result in you winning over time, but my set does so at
a far slower rate.

When looking in terms of these win differences, it is clear that the
Owens set is better than my set. To say that one set is better than another
– and assuming that there are more sets of nontransitive dice under our
conditions than the two we have found – raises the question: is there a best
solution, and, if so, what is it?

Searching for the Best Solution

To begin, we must note that there is no one way to define a “best solution,”
so we need to decide what it is exactly that we are looking for. We chose to
look for the solution with the highest sum of win differences as our “best
solution”. Now, with that in mind, the simplest route forward is to check
all the solutions and choose the best one. To find all of the solutions, we
will check all of the possible combinations of dice. This will certainly re-
quire the aid of a computer program, but even then, there are not unlimited
capabilities. We first checked the number of combinations we would have
to deal with. Given our conditions, each of the 6 faces of a die can have
any one of 6 numbers on it. This means there are 66 = 466,566 ways to
create one die. Since our game has 3 dice, we compare all possible sets of
3 dice. This makes a grand total of (66)3 = 101,959,596,668,416 possible
games that we would have to check. That is over 100 trillion combina-
tions, which is far too much to run even via program, so, we found a way
to simplify.

When using to calculate the number of dice, we indeed counted them
all, but we also counted every permutation of every die. This means that
the valid die called (1,1,1,1,1,2) has also been counted under the names
(1,1,1,1,2,1), (1,1,1,2,1,1), (1,1,2,1,1,1), (1,2,1,1,1,1), and (2,1,1,1,1,1).

Figure 5. Nets of Set of Die Permutations

164

Recall that only one of these dice, the one with labels in nondecreasing
order, is valid. So, we need another way to construct these dice that in-
cludes the ones we want to consider and does not include these extraneous
permutations.

We can start by setting the first number on a die, denoting the nth
number on the die as D(n). When the first number, D(1), is set, we have
limited possibilities for the second number, D(2); it must be greater than or
equal to D(1). In general, D(n+1) must always be greater than or equal to
D(n). Let us use a die that starts with a 4, for example. For D(1) = 4, D(2)
could be 4, 5, or 6. If D(2) = 4, then again the next number, D(3), could be
4, 5, or 6, but if D(2) = 5, then D (3) can only be 5 or 6, and if D(2) = 6 then
D(3) must be 6. So now, deciding just the first three sides of a die with D(1)
= 4, we have 6 possibilities. If we continue this process to its conclusion
with D(6), we will see that there are 21 possible dice where D(1) = 4. We
must also execute this process for D(1) = 1,2,3,5,6, and then we will add
all of these possibilities together. When we do this, we produce 462 total
possible valid dice. This means there are only 4623 = 98,611,128 combina-
tions to check. This number (just under 100 million), while still very large,
is much more manageable.

Figure 6. Branch Diagram for Dice with D(1) = 4

Next, we needed a strategy for computing the best solution. The first step
in writing the program, which can be found in the appendix, was to create
the dice. While the way we have named the dice is easy for us to under-
stand, it is not as easy or efficient to program them in the same way. So,
instead of naming the dice by the numbers that appear on the faces of the
die, we name them by the frequency which each number appears. Because
there are 6 numbers that can appear on these dice, each die will become

165

an array of 6 components, each representing a different number 1 - 6. For
example, we will take a die from my set, the one named (2,2,3,5,5,6), and
represent it in our new array form. We can start with a blank array (notice
the bracket notation instead of parentheses): [-,-,-,-,-,-]. The first compo-
nent will represent the frequency of ones. This particular die has 0 ones,
so we will fill that spot in with a 0: [0,-,-,-,-,-]. For the second component,
we note that the die has 2 twos, so we fill in: [0,2,-,-,-,-]. Then 1 three:
[0,2,1,-,-,-], and so on until we get the completed array, which in this case
is [0,2,1,0,2,1]. Because we are using dice with 6 sides, any die that we
rename in this new array form will have the total of its components equal
to 6. This allows for much simpler programming.

We wrote the program using a series of “for” loops to give us the
dice. Essentially, we loop through the frequencies of each number from
1 to 6, which will result in all of the dice forming in a specific order,
which will be useful later. For Die 1, we start with a 6 in the sixes place:
[0,0,0,0,0,6], or (6,6,6,6,6,6). Then for Die 2, we have one less six and
add a five: [0,0,0,0,1,5], or (5,6,6,6,6,6), followed by having 2 to 6 fives:
[0,0,0,0,2,4], [0,0,0,0,3,3], [0,0,0,0,4,2], [0,0,0,0,5,1] and [0,0,0,0,6,0].
Then we add 1 four, beginning with [0,0,0,1,0,5] and looping through the
different numbers of fives and sixes until we end with [0,0,0,1,5,0]. We
then do the same for 2 to 6 fours and then all possibilities of numbers in
this fashion, ending on Die 462: [6,0,0,0,0,0], or (1,1,1,1,1,1). This pro-
cess outputs a matrix we named “DiceFreq”, which is a 462-row matrix
(one row for each die) with 6 columns for the different frequencies. Each
die array is now a row in this matrix.

We can then use DiceFreq to create a matrix of win differences. It
is, in this case, a 462 x 462 matrix where each die is compared with each
die, including itself, and the net wins, or win difference, is stored in that
position of the matrix. That is to say, in position (i, j) of the matrix (row i
and column j), the entry, ai,j, is net wins of Die i over Die j. We do this by
multiplying the number of sixes on Die i by the number of faces less than
Six on Die j (because each six will win in each of these cases). We add
this to the number of fives on i times the number of faces less than 5 on j,
and so on until we have added the 5 products (we can ignore ones since
they never win). This is why it is so beneficial to store the dice by their
frequencies as we did in DiceFreq. To do these win difference calcula-
tions, we need to know the frequency which each number appears, which
is exactly what we have. DiceFreq(m, n) is the number of faces labeled

166

“n” on Die m. For example, DiceFreq(289,4) is the number of fours on
Die 289. So, when comparing Die 289 with Die 46, we have the fours step
in calculating a289,46:

DiceFreq(289,4)(DiceFreq(46,3)+DiceFreq(46,2)+DiceFreq(46,1)).

This serves mostly as an intermediary step towards our solution, but
there are a couple of interesting things to note. When i = j, also known as
the entries on the diagonal of the matrix, ai,j = 0. This is because we will
be comparing a die with itself when i = j, and no die will have any advan-
tage when rolled against itself. It is also worth noting that this matrix is
skew-symmetric. This means that, ai,j = −aj,i, or for example, a64,351 = −a351,64.
This occurs because, in these cases, we are comparing the same two dice;
we are just counting the net wins from different perspectives. Taking any
dice A and B, if A beats B 12 times, then it must be the case that B beats A
-12 times; the negative is also interpretable as denoting net losses.

 The final step is writing code that will analyze this win matrix and
tell us where any 3 dice – A, B, & C – have the relationship that we are
looking for: A ≻ B, B ≻ C, C ≻ A. This will show us all solutions to our
problem. From there, we can narrow the results further to find whether
there is a best solution.

Results

We learned several things from running this program. They are as follows:
Using only 3 different numbers on the dice (or 1 or 2 different numbers, for
that matter, but these are trivial) is not enough to create a set of nontransi-
tive dice. 4 different numbers are the minimum required. Out of the nearly
100 million possible sets, only 121,998 sets are nontransitive. Because of
the way we wrote our program, each set appeared in our results 3 times un-
der different permutations, so, as before, we eliminate these extras. Divid-
ing the total by three gives the true number of different sets of nontransitive
dice, leaving us with 40,666. Now we look at the win differences of these
sets to determine the best. We found that three sets contained the highest
minimum win difference, meaning the least of their three win differences
was higher than the least win difference in any other set, which was 6. Two
of these sets: {(3,3,3,3,4,6), (2,2,2,5,5,5), (1,4,4,4,4,4)} & {(1,3,4,4,4,4),
(3,3,3,3,3,6), (2,2,2,5,5,5)}, have win differences summing to 21. The re-
maining set has the greatest sum of win differences, 26, meaning that, by
our definition of “best,” this will be the singular, best solution.

167

The three dice in the best set are A - (3,3,3,3,3,6), B - (2,2,2,5,5,5), &
C - (1,4,4,4,4,4).

Figure 7. Nets of Best Set of Nontransitive Dice

Upon a quick glance at the dice in this set, you will notice a striking sym-
metry. Picturing the faces as dots above a number line, if we reflect A over
a line at 3.5, we get C (and vice versa). B itself has perfect symmetry when
reflected over this line at 3.5; it is identical to its own reflection. These
symmetries were unexpected, but they are intriguing to explore.

Figure 8. Number Line Constructions of Best Set

Looking at the matchups of this set, A ≻ B and B ≻ C both with win differ-
ences of 6, and C ≻ A with a win difference of 14. These win differences,
particularly in the last case, are far greater than those in the original two
sets that we discovered. With this set, if your opponent is unwise enough to
choose Die A and you make the right choice of Die C, you will win more
than twice as often as them. Even if they make the better choice of Die B
or Die C, you will still have all their money in no time.

 A B C

168

Additional Research

Much research has been done on this topic, exploring many related ques-
tions. Some examples are: “When can these sets of nontransitive dice ex-
ist?”, “How large can the sets be?”, and “Can you create a game for more
than two players?” More information and answers to these questions can
be found in [2], [3] & [4], and [5], respectively.

169

References

[1] 	 Enzoklop.https://commons.wikimedia.org/wiki/File:Rock-pa-
per-scissors.svg

[2] 	 Schaefer, A., & Schweig, J. (2017). Balanced nontransitive dice.
The College Mathematics Journal, 48(1), 10–16. https://doi.
org/10.4169/college.math.j.48.1.10

[3] 	 Gardner, M. (1970). Mathematical games. Scientific American,
223(6), 110–115. http://www.jstor.org/stable/24927686

[4] 	 Angel, L., & Davis, M. (2017). A direct construction of nontransi-
tive dice sets. Journal of Combinatorial Designs, 25(11), 523–529.
https://doi.org/10.1002/jcd.21563

[5] 	 Grime, J. (2017). The bizarre world of nontransitive dice: Games for
two or more players. The College Mathematics Journal, 48(1), 2–9.
https://doi.org/10.4169/college.math.j.48.1.2

170

Appendix

% Create all the dice by the frequency of their labels
DiceFreq=zeros(462,6);
counter=0;
for ones=0:6
 for twos=0:(6-ones)
 for threes=0:(6-ones-twos)
 for fours=0:(6-ones-twos-threes)
 for fives=0:(6-ones-twos-threes-fours)
 counter=counter+1;
 DiceFreq(counter,1)=ones;
 DiceFreq(counter,2)=twos;
 DiceFreq(counter,3)=threes;
 DiceFreq(counter,4)=fours;
 DiceFreq(counter,5)=fives;
 DiceFreq(counter,6)=6-fives-fours-threes-twos-ones;
 end
 end
 end
 end
end
% Compare all dice with matrix of Win Differences
W=zeros(462,462);
for i=1:462
 for j=(i+1):462
W(i,j)=DiceFreq(i,2)*DiceFreq(j,1)+DiceFreq(i,3)*(DiceFreq(j,2)+DiceFreq(j,1))+Dice
Freq(i,4)*(DiceFreq(j,3)+DiceFreq(j,2)+DiceFreq(j,1))+DiceFreq(i,6)*(DiceFreq(j,5)+
DiceFreq(j,4)+DiceFreq(j,3)+DiceFreq(j,2)+DiceFreq(j,1))+DiceFreq(i,5)*(DiceFreq(j,
4)+DiceFreq(j,3)+DiceFreq(j,2)+DiceFreq(j,1)) -
(DiceFreq(j,2)*DiceFreq(i,1)+DiceFreq(j,3)*(DiceFreq(i,2)+DiceFreq(i,1))+DiceFreq(j
,4)*(DiceFreq(i,3)+DiceFreq(i,2)+DiceFreq(i,1))+DiceFreq(j,6)*(DiceFreq(i,5)+DiceFr
eq(i,4)+DiceFreq(i,3)+DiceFreq(i,2)+DiceFreq(i,1))+DiceFreq(j,5)*(DiceFreq(i,4)+Dic
eFreq(i,3)+DiceFreq(i,2)+DiceFreq(i,1)));
W(j,i)=-W(i,j);
 end
end
% Find all Nontransitive sets
counter=0;
for i=1:462
 for j=1:462
 for k=1:462
 if (W(i,j)>0) && (W(j,k)>0) && (W(k,i)>0)
 counter=counter+1;
 Result(counter,:)=[i,j,k];
 end

2

 end
 end
end
% Calculate all minimum Win Differences
for index=1:counter
 i=Result(index,1);
 j=Result(index,2);
 k=Result(index,3);
 WinDist(index)=min([W(i,j),W(j,k),W(k,i)]);
end
MaxDist=max(WinDist);
WinLoop=find(WinDist==MaxDist);
Result(WinLoop,:)

