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7262 1. Modules Spring 2018

Let R be a ring with a 1. A (left) R-module is a set M with addition +: M ×M →M
and scalar multiplication × : R×M →M such that

• (M,+) is an abelian group —

A1 (x+ y) + z = x+ (y + z) Associativity

A2 x+ y = y + x Commutativity

A3 x+ 0 = 0 + x = x Additive Identity

A4 x+ (−x) = (−x) + x = 0 Additive Inverse

• Scalar multiplication is distributive —

D1 (λ+ µ)x = λx+ µx Distributivity

D2 λ(x+ y) = λx+ λy Distributivity

• Scalar multiplication is an action on M —

S1 1x = x Identity

S2 (λµ)x = λ(µx) Associativity

Examples

1. If R is a field then an R-module is the same as an R-vector space.

2. If R = Z then any abelian group (M,+) can be considered as a Z-module by
defining n.x = x+ · · ·+ x (n times, n > 0) or n.x = (−x) + · · ·+ (−x) (−n times
n < 0) and 0.x = 0.

3. If M = R and scalar multiplication is given by multiplication in R then M = R
itself becomes an R-module.

4. If S is a subring of R then any R-module can be considered as an S-module by
restricting scalar multiplication to S ×M . For example, a complex vector space
can be considered as a real vector space (of twice the dimension), or as an abelian
group (Z-module). As a special case R itself can be considered as an S-module.

5. If R = F [X] is the polynomial ring over a field F , then an R-module is an F -vector
space V with a map T : V → V given by T (v) = X.v. Using the axioms one can
prove that T is F -linear. Conversely, given any F -vector space V and linear map
T : V → V we can turn V into an F [X]-module by defining scalar multiplication
by (

∑
aiX

i).v =
∑
aiT

i(v) where T 0(v) = v and T i+1(v) = T i(T (v)).

In any module we have the equalities 0v = 0 (first 0 in R, second 0 inM), (−λ)v = −(λv)
(first − in R, second − in M).

An R-linear map between two R-modules M and N is a map f : M → N such that
f(x+ y) = f(x) + f(y) and f(λx) = λf(x).

An isomorphism is an R-linear map f : M → N such that f−1 exists and is also
R-linear. Equivalently, it is a bijective R-linear map.
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A subset N of an R-module M is called a submodule (N ≤M) if (N,+) is a subgroup
of (M,+) and N is closed under scalar multiplication: λ ∈ R, x ∈ N ⇒ λx ∈ N .
Equivalently, N ̸= ∅ and ∀x, y ∈ N, λ, µ ∈ R : λx+ µy ∈ N .

Examples

1. If R is a field then R-linear maps = linear maps, submodules = subspaces.

2. If R = Z then R-linear maps = group homomorphisms, submodules = subgroups.

3. If R = F [X] is the polynomial ring over a field F , and V is an R-module given
as a vector space and a linear map T : V → V , then submodules are invariant
subspaces (subspaces U such that T (U) ⊆ U). R-linear maps (V, T )→ (W,S) are
linear maps f : V → W such that f(T (v)) = S(f(v)).

4. If R is considered as an R-module, then submodules = left ideals of R.

If N ≤ M are R-modules, the quotient module M/N is an R-module such that
(M/N,+) is the usual quotient group of (M,+) by (N,+) (since M is abelian, N is
automatically normal), and scalar multiplication is defined by λ(x+N) = λx+N .

Exercise: Show that this definition of scalar multiplication is well defined and that
M/N is an R-module.

Examples

1. If R is a field, quotient modules = quotient spaces.

2. If R = Z, quotient modules = quotient groups.

3. If R is a ring and I is an ideal of R then the quotient ring R/I is also an R-module.
For example, Z/nZ is a Z-module.

If N ≤ M then inclusion i : N → M , i(v) = v, and quotient map π : M → M/N ,
π(v) = v +N , are both R-linear maps.

Theorem (1st Isomorphism Theorem)
If f : M → N is an R-linear map then Ker f ≤M , Im f ≤ N and f = i ◦ f̃ ◦ π where

• π : M →M/Ker f is the (surjective) quotient map,

• f̃ : M/Ker f → Im f is an R-module isomorphism,

• i : Im f → N is the (injective) inclusion map.

Theorem (2nd Isomorphism Theorem)
If N ≤ M the there is a bijection between submodules L with N ≤ L ≤ M and submo-
dules L/N of M/N . Also (M/N)/(L/N) ∼= M/L.

Theorem (3rd Isomorphism Theorem)
If A,B ≤M are submodules then B ≤ A+B = {a+ b : a ∈ A, b ∈ B}, A∩B ≤ A, and
(A+B)/B ∼= A/(A ∩B).
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7262 2. Direct Sums and Products Spring 2018

The direct sum N1⊕N2 of two modules is the cartesian product N1×N2 with addition
and scalar multiplication defined componentwise: (a1, a2) + (b1, b2) = (a1 + b1, a2 + b2),
λ(a1, a2) = (λa1, λa2). More generally, if Ni, i ∈ S are R-modules, the direct product∏

i∈S Ni is the cartesian product {(ai)i∈S : ai ∈ Ni} and the direct sum
⊕

i∈S Ni is the
subset {(ai)i∈S : only finitely many ai ̸= 0} of

∏
Ni. In both cases addition and scalar

multiplication are defined componentwise.

Note: If there is a finite number of factors there is no difference between direct sum and
direct product, however in general the direct sum is a submodule of the direct product.

Let Ni be R-modules, then define inclusion and projection maps

• ii : Ni →
⊕

Nj; a 7→ (0, . . . , 0, a, 0, . . . ) where the a is in the i’th component.

• πi :
∏
Nj → Ni; (aj)j∈S 7→ ai.

If Ni, i ∈ S, are submodules of M then the sum
∑
Ni is the set of all finite sums

∑
ai,

ai ∈ Ni, of elements from the Ni. It is a submodule of M and is the smallest submodule
containing every Ni. Note that if S ̸= ∅ then

∩
Ni is a submodule ofM and is the largest

submodule contained in every Ni.

The direct sum
⊕

Ni, and direct product
∏
Ni, both contain submodules Ñi = Im ii =

{(aj)j∈S : aj = 0 for j ̸= i} isomorphic to Ni. The direct sum is equal to the sum
∑

i Ñi,
but the direct product is larger that

∑
i Ñi in general.

Lemma 2.1 If Ni ≤M , i ∈ S, then the following are equivalent

a) Every x ∈ M can be written uniquely as
∑

i ai, ai ∈ Ni, with only finitely many
ai ̸= 0.

b)
∑

iNi =M and for all i, Ni ∩ (
∑

j ̸=iNj) = (0).

In this case M ∼=
⊕

Ni.

Exercise: Suppose f : M → N and g : N →M are R-linear maps with fg = 1N . Show
that M ∼= Ker f ⊕ Im g.

Direct Sums
Let Ni be R-modules. For any R-module
M and R-linear maps fi : Ni → M there
exists a unique R-linear map h :

⊕
Ni →

M such that fi = h ◦ ii.

Ni
fi−→ M

ii
↘ ↑ h⊕

j Nj

Proof h((ai)i∈S) =
∑

i∈S fi(ai)

Direct Products
Let Ni be R-modules. For any R-module
M and R-linear maps fi : M → Ni there
exists a unique R-linear map h : M →∏
Ni such that fi = πi ◦ h.

Ni
fi←− M

πi
↖ ↓ h∏

j Nj

Proof h(x) = (fi(x))i∈S

3



7262 3. Homomorphisms Spring 2018

Let N andM be R-modules. Then HomR(N,M) is the set of all R-linear maps N →M .

Lemma 3.1 If R is commutative then HomR(N,M) is an R-module under addition
(f + g)(x) = f(x) + g(x) and scalar multiplication (λf)(x) = λf(x).

Note that if R is not commutative λf may not be R-linear since (λf)(µx) = λµx may
not be the same as µ(λf)(x) = µλx. However, we always have addition of R-linear
maps, so HomR(N,M) is always an abelian group under addition (or more generally an
S-module where S is the center of R, i.e., the subring of elements that commute with
all elements of R).

Universal properties of direct sums and products

The universal properties of the last section can be restated as saying there are bijections

HomR(
⊕

i
Ni,M) ∼=

∏
i

HomR(Ni,M), HomR(M,
∏

i
Ni) ∼=

∏
i

HomR(M,Ni).

Indeed, these bijections are R-linear isomorphisms when R is commutative (S-linear if
R is not commutative).

Exact Sequences

A sequence of R-modules Mi and maps fi : Mi →Mi+1

. . .
fi−2−→Mi−1

fi−1−→Mi
fi−→Mi+1

fi+1−→ . . .

is called exact if Ker fi = Im fi−1 (≤Mi) for all i.

Examples

1. The sequence 0−→M
f−→N is exact iff f : M → N is injective (the map 0 → M

must be the zero map, so does not need to be explicitly mentioned).

2. The sequence M
f−→N −→ 0 is exact iff f : M → N is surjective (the map N → 0

must be the zero map, so does not need to be explicitly mentioned).

3. The sequence 0−→M
f−→N −→ 0 is exact iff f is an isomorphism.

4. If 0−→K
g−→M

f−→N −→ 0 is exact then N ∼= M/K (or more strictly M/ Im g
where Im g = Ker f ∼= K).

Exact sequences are a very handy notational convenience.

Exercises
1. Show that if R is commutative then HomR(R,M) ∼= M as R-modules.

2. Deduce that HomR(R
n, Rm) ∼= Rnm (Think matrices!)

3. Show that HomZ(Z/nZ, A) ∼= A[n] where A[n] = {a ∈ A : na = 0}.
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7262 4. Free Modules Spring 2018

A set of elements {ei : i ∈ S} of a module M is linearly independent if whenever∑
λiei = 0 then all λi = 0. (Here as always we assume the sum is finite, so λi = 0 for all

but a finite number of i, even if the set {ei} is infinite). A set of elements {ei} generate
(or spans) M if any x ∈ M can be written as a (finite) linear combination x =

∑
λiei.

A basis is a linearly independent set that generates M .

Theorem 4.1 The following are equivalent for an R-module F .

a) F has a basis {ei : i ∈ S},
b) F ∼=

⊕
i∈S R,

c) There is a function e : S → F such that for any R-module M
and any function ϕ : S → M , there exists a unique R-linear map
h : F →M such that h ◦ e = ϕ.

S
ϕ→ M

e↘ ↑h
F

Proof. (sketch)
a)⇒b). Show that the map f :

⊕
i∈S R→ F , f((λi)i∈S) =

∑
λiei is an isomorphism.

b)⇒c). h((λj)j∈S) must be
∑

j λje(j), and this works.
c)⇒a). Let ej = e(j) for j ∈ S. For linear independence, let M =

⊕
j∈S R and let

ϕ(j) = (δjk)k∈S where δjk = 1 if j = k and 0 otherwise. To generate F , let F ′ be the
submodule of F generated by the ej and consider h = projection, and h = 0, as maps to
M = F/F ′. Uniqueness of h implies these are the same, so F ′ = F .

If these conditions hold we say that F is a free R-module. The rank of F , rkR F , is the
cardinality of the basis S. If R is a field, the rank is also called the dimension.

Note: in condition c) the image of the map e : S → F is a basis for F and c) just states
that any function defined on a basis of F can be extended uniquely to an R-linear map
on F .

Exercise: Show that Q and Z/nZ, n > 1, are not free Z-modules.

Questions

A. Is rkR F well defined? I.e., does Rn ∼= Rm imply n = m?

B. If F ′ ≤ F and F ′, F are free, is it true that rkR F
′ ≤ rkR F?

C. If F is free and N ≤ F , is it true that N is free?

The answers to each of these questions is No in general, but Yes in some important
special cases.

Lemma 4.2 Assume M is an R-module and I is an ideal of R. Write IM = {
∑
aimi :

ai ∈ I, mi ∈M}. Then IM ≤M and M/IM is naturally an R/I-module.

Proof. (sketch) Scalar multiplication is defined by (λ+ I)(x+ IM) = λx+ IM . Check
this is well defined and satisfies all the axioms.
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Theorem 4.3 If R is commutative and F is a free R-module, then rkR F is well-defined.
In particular, any two bases have the same number of elements.

Proof. Let I be a maximal ideal of R. Then R/I is a field and F/IF is an R/I-
vector space. Since F ∼=

⊕
i∈S R, F/IF

∼=
⊕

i∈S R/I (check this!), so rkR F = |S| =
dimR/I(F/IF ) is uniquely determined.

Lemma 4.4 If R is an ID and F is a free R-module, then any subset of F with strictly
more than rkR F elements is linearly dependent.

Proof. Without loss of generality F =
⊕

i∈S R. Let K = Frac(R) be the field of
fractions of R. Then V =

⊕
i∈SK is an R-module and F is a sub-R-module of V . Any

set {vi} of elements of F of size larger than dimK V = |S| are linearly dependent in V ,
so there exist λi = pi/qi ∈ K not all zero, and all but finitely many zero, such that∑
λivi = 0. But q =

∏
λi ̸=0 qi ̸= 0 and

∑
(qλi)vi = 0, where qλi ∈ R and qλi are not all

zero. Hence the vi are R-linearly dependent.

If R is an ID, define the rank of any R-moduleM to be the supremum of the cardinalities
of the linearly independent sets in M . By Lemma 4.4 this definition agrees with the
earlier definition on free modules.

Exercise: Show that rkZQ = 1 and rkZ(Z/nZ) = 0 for n > 0.

Theorem 4.5 If R is an ID, M is an R-module, and N ≤M , then rkRN ≤ rkRM .

Proof. Any linearly independent set in N must still be linearly independent in M .

In general Question C is false even when R is an ID. For example, the submodules of the
(free, rank 1) R-module R are just the (left = two sided) ideals I of R. However, I is
only free of rank 1 if it has a basis {e1} of size 1. But then I = Re1 = (e1) is principal.
Thus Question C can only be true if R is a PID. We shall see that it is true for a PID
in the next section.

Matrices

Lemma 4.6 Assume R is commutative. If N is a free R-module with basis A =
{e1, . . . , en} and M is a free R-module with basis B = {f1, . . . , fm}. Then for any R-
linear map f : N →M there exists a unique m× n matrix [f ]B,A = (aij) with entries in
R such that f(ei) =

∑
ajifj. Conversely, any such matrix gives rise to an R-linear map.

Furthermore, if P is another R-module with basis C = {g1, . . . , gp} and g : N → P , then
[gf ]C,A = [g]C,B[f ]B,A where the product is given by matrix multiplication.

Exercise: Suppose [f ]B,A = A. Show that if A′ and B′ are also bases for N and M
respectively then [f ]B′,A = PA and [f ]B,A′ = AQ−1 for some invertible matrices P and
Q. [Hint: P = [1]B′,B.]
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7262 5. Modules over PIDs Spring 2018

Lemma 5.1 Any non-empty collection X of ideals of a PID has a maximal element.

Proof. Order X by inclusion and apply Zorn’s lemma. If C = {Iα : α ∈ S} is a chain
of ideals, let I = ∪Iα. It is easy to check that I is an ideal. But R is a PID, so I = (a)
for some a ∈ R. This a must lie in some Iα, so I = (a) ⊆ Iα ⊆ I and I = Iα is an upper
bound for C. By Zorn, X has a maximal element.

Theorem 5.2 If R is a PID and M is a submodule of a free R-module N of rank n,
then M is free of rank m ≤ n. Moreover, there exists a basis {y1, . . . , yn} of N and
non-zero a1, . . . , am ∈ R such that a1 | a2 | · · · | am and {a1y1, . . . , amym} is a basis
of M .

Proof. Without loss of generality N = Rn. Write πi for the projection map of N onto
the ith factor R. If M = 0 then the result is clear with m = 0, so suppose M ̸= 0. Con-
sider the set of R-linear maps ϕ : N → R and write Iϕ = ϕ(M). Pick a map ν : N → R
such that Iν = (a1) is maximal among these ideals. If a ∈ M , a ̸= 0, then one of the
projections πi(a) is non-zero, so Iπi ̸= (0). Hence by maximality a1 ̸= 0. Also, there
exists y ∈M such that ν(y) = a1.
Claim 1. For all ϕ : N → R, a1 | ϕ(y).
Pick any ϕ and let d = r1a1+ r2ϕ(y) be a gcd of a1 and ϕ(y) in R. Then d = ϕ′(y) where
ϕ′ : N → R is the R-linear map r1ν + r2ϕ. But then d ∈ Iϕ′ , so Iν = (a1) ⊆ (d) ⊆ Iϕ′ .
By maximality of Iν , a1 | d, so a1 | ϕ(y).
Claim 2. y = a1y1 for some y1 ∈ N .
Since a1 | πi(y) for all i and y = (π1(y), . . . , πn(y)), y = a1y1 for some y1 ∈ N .
Claim 3. N = Ry1 ⊕Ker ν, M = Ra1y1 ⊕ (M ∩Ker ν).
Since y = a1y1, a1 = ν(y) = a1ν(y1). Since R is an ID, ν(y1) = 1. If x ∈ M then
x = ν(x)y1+(x−ν(x)y1). But ν(x−ν(x)y1) = ν(x)−ν(x) = 0. Hence N = Ry1+Ker ν.
If x ∈ Ry1∩Ker ν then x = ay1 and 0 = ν(x) = a. Hence x = 0. Thus N = Ry1⊕Ker ν.
A similar argument (using the fact that ν(M) = (a1)) shows M = Ra1y1⊕ (M ∩Ker ν).
Claim 4. rkR(M ∩Ker ν) < rkRM , rkRKer ν < rkRN .
If {x1, . . . , xk} is linearly independent in M ∩Ker ν then {y, x1, . . . , xk} is linearly inde-
pendent in M , since if λy +

∑
λixi = 0 then 0 = ν(λy +

∑
λixi) = λ and

∑
λixi = 0.

A similar proof shows rkRKer ν < rkRN .
Claim 5. M is free.
Using induction on rkRM we can assumeM ∩Ker ν is free with basis {x1, . . . , xk}. Then
M = Ra1y1 ⊕ (M ∩Ker ν) has basis {a1y1, x1, . . . , xk}.
Completion of Proof.
Applying Claim 5 to Ker ν ≤ N we see that Ker ν is free. Claim 4 shows rkKer ν < n, so
using induction on n and consideringM ∩Ker ν as a submodule of the free module Ker ν
we have a basis {y2, . . . , yn} of Ker ν and basis {a2y2, . . . , amym} of M ∩ Ker ν. Hence
{y1, . . . , yn} is a basis of N and {a1y1, . . . , amym} is a basis forM where a2 | a3 | · · · | am.
Let d = r1a1 + r2a2 = gcd(a1, a2) and let ϕ = r1π1 + r2π2 where πi are the projections
to coordinates given by the basis {y1, . . . , yn}. Then ϕ(a1y1 + a2y2) = r1a1 + r2a2 = d,
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Iν = (a1) ⊆ (d) ⊆ Iϕ. Hence by maximality of Iν , (d) = (a1) and a1 | a2.

Theorem (Fundamental Theorem of Finitely generated modules over a PID.)
Let M be a finitely generated R-module where R is a PID. Then there exists a1, . . . , am
with ai ̸= 0, ai ̸= unit, a1 | a1 | · · · | am and r ≥ 0 such that M ∼= Rr⊕R/(a1)⊕R/(a2)⊕
· · · ⊕R/(am). Moreover, r, m, and the ideals (ai) are uniquely determined by M .

Proof. (Existence) Let M be generated by x1, . . . , xn and consider the R-linear map ϕ
from a free module N with basis {e1, . . . , en} which sends ei to xi. Then xi ∈ Imϕ, so ϕ
is surjective andM ∼= N/Kerϕ. But Kerϕ ≤ N , so there is a (new) basis {y1, . . . , yn} of
N such that Kerϕ has basis {a1y1, . . . , amym}. Using this basis we have an isomorphism
N ∼= R ⊕ R ⊕ · · · ⊕ R in which Kerϕ is Ra1 ⊕ Ra2 ⊕ · · · ⊕ Ram ⊕ (0) ⊕ · · · ⊕ (0). But
then M ∼= N/Kerϕ ∼= R/(a1)⊕ · · · ⊕R/(am)⊕Rr where r = n−m. Finally, any terms
R/(ai) with ai = unit can be dropped, so we may assume the ai are not units.

Lemma 5.3 If p is a prime of the PID R, and M = R/(a) then pi−1M/piM = 0 if
pi ̸ | a and pi−1M/piM ∼= R/(p) if pi | a.

Proof. Let f : R → pi−1M/piM be defined by f(x) = pi−1(x + (a)) + piM . This is
clearly surjective and Ker f = {x : pi−1x ∈ (a, pi)}. But (a, pi) = (gcd(a, pi)) ⊇ (pi−1) if
pi ̸ | a, so in this case Ker f = R. If pi | a then Ker f = pR. The result follows.

Proof. (Uniqueness) Pick any prime p of R and i ≥ 1. If

M ∼= Rr ⊕R/(a1)⊕ · · · ⊕R/(am) ∼= Rr′ ⊕R/(a′1)⊕ · · · ⊕R/(a′m′)

Then pi−1M/piM ∼= (R/(p))k ∼= (R/(p))k
′
where k = r + #{j : pi | aj}, k′ = r′ +

#{j : pi | a′j}. But pi−1M/piM = N/pN where N = pi−1M , so can be considered
as an R/(p)-module. But R is a PID, so (p) is maximal and R/(p) is a field. Hence
k = dimR/(p)(p

i−1M/piM) = k′. Fixing p and letting i→∞ we see r = r′. Also, if #{j :
pi | aj} = s and a1 | · · · | am then we must have pi ̸ |a1, . . . , am−s and p

i | am−s+1, . . . , am.
Thus knowledge of k = k′ for all p and all i gives the prime factorizations of the ai and
a′i up to a unit. Hence m = m′ and (ai) = (a′i).

The factors R/(ai) are called the invariant factors of M .

Theorem 5.4 Let M be a finitely generated R-module where R is a PID. Then there
exists primes p1, . . . , pm (not necessarily distinct) and integers b1, . . . , bm > 0, r ≥ 0,
such that M ∼= Rr ⊕ R/(pb11 )⊕ R/(pb22 )⊕ · · · ⊕ R/(pbmm ). Moreover, r, m, and the ideals
(pbii ) are uniquely determined by M up to order.

Proof. (sketch) Follows from the Fundamental Theorem of Finitely generated modules
over a PID using the Chinese Remainder Theorem: If a = upb11 . . . p

br
r where pi are distinct

primes and u is a unit then R/(a) ∼= R/(pb11 )⊕ · · · ⊕R/(pbrr ) as an R-module. The proof
of this is the same as the proof of the CRT for rings. The proof of the uniqueness of the
representation is similar to the uniqueness proof above.

The factors R/(pbii ) are called the elementary divisors of M .
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7262 6. Smith Normal Form Spring 2018

Theorem 6.1 Let R be a PID and let N and M be free R-modules of rank n and m
respectively. Let ϕ : N → M be R-linear. Then there exist bases A of N and B of M
such that [ϕ]B,A is of the form 

a1 . . . 0 . . . 0
...

. . .
... . . . 0

0 . . . ar . . . 0
0 . . . 0 . . . 0


with a1 | a2 | · · · | ar. Moreover the ai are unique up to associates.

Proof. (Uniqueness of the ai)
The module M/ Imϕ is clearly isomorphic to R/(a1)⊕ · · · ⊕R/(ar)⊕Rm−r. The result
follows from the uniqueness of the invariant factors of this module.
Existence (Non-constructive)
Since Imϕ ≤ M and M is free there is a basis B = {y1, . . . , ym} of M such that Imϕ
has basis {a1y1, . . . , aryr}. Choose y′i ∈ N so that ϕ(y′i) = aiyi. Then there exists a
unique linear map ψ : Imϕ → N such that ψ(aiyi) = y′i. Let {z1, . . . , zk} be a basis for
the (free) module Kerϕ ≤ N . Since ϕψ = 1Imϕ, we have M ∼= Imψ ⊕ Kerϕ, and so
A = {y′1, . . . , y′r, z1, . . . , zk} is a basis for M . The matrix [ϕ]B,A is of the required form.

We shall give a constructive proof of this theorem in the case when R is a Euclidean
domain. Recall that if R is a ED, there exists a function d : R → N such that for any
a, b ∈ R, b ̸= 0, there exist q, r ∈ R such that a = qb+ r with d(r) < d(b) or r = 0.

Two m× n matrices A and B are equivalent if there exist invertible matrices P and Q
such that B = PAQ.

Exercise: A and B are equivalent iff there exists an R-linear map ϕ and bases
A,A′,B,B′ with A = [ϕ]B,A and B = [ϕ]B′,A′ .

Elementary row and column operations

Let Eij be the n × n matrix with 1 in the (i, j) place and 0 elsewhere. If i ̸= j,
let Tij(λ) = In + λEij. Note that Tij(λ)

−1 = Tij(−λ), so Tij(λ) is invertible. Let
Sij = In−Eii−Ejj +Eij +Eji. Then S

2
ij = In so Sij is invertible. Although not strictly

needed, we also define for any unit u ∈ R, Ui(n) = In+ (u− 1)Eii, so Ui(u)
−1 = Ui(u

−1)
and Ui(u) is invertible.

Lemma 6.2 If A ∈Mm,n(R) then

1. the matrix ATij(λ) is obtained from A by adding λ times the ith column to the jth
column of A,

2. the matrix ASij is obtained by swapping the ith and jth columns of A,

9



3. the matrix AUi(u) is obtained by multiplying the ith column of A by u.

If Tij(λ), Sij, Ui(u) are defined as m × m matrices then similar statements hold for
Tij(λ)A, SijA, Ui(u)A with ‘column’ replaced with ‘row’.

Constructive Proof of Existence in Theorem for EDs.
First we show that A is equivalent to a matrix of the form

a1 0 . . . 0
0
... A′

0


with every entry of A′ divisible by a1. The proof is by induction on the minij d(aij). If
A = 0 then we are done, so we may assume there are non-zero entries in A = (aij). Let
aij be a non-zero entry with minimal value of d(aij). Then by swapping the ith row with
the 1st row and the jth column with the 1st column we can assume d(a11) = minij d(aij).
Let a1 = a11 and for each i > 1 write ai1 = qia1 + ri. then by adding −qi times the
first row to the ith row for each i we obtain a new matrix with 1st column a1, r2, . . . , rm.
Now each ri is either 0 or d(ri) < d(a1). If d(ri) < d(a1) and ri ̸= 0 then we are done
by induction, so we may assume all the ri = 0. Similarly adding multiples of the 1st
column to the other columns we get a matrix of the above form. If now remains to show
that we can assume a1 divides all the entries of A′. Assume otherwise and assume there
is an entry aij that is not divisible by a1. Add the ith row to the 1st row so that the 1st
row becomes a1, ai2, . . . , ain. Now add multiples of the 1st column to the other columns
as above to get the 1st row a1, r2, . . . , rn, aij = qja1 + rj, rj = 0 or d(rj) < d(a1). But
now at least one of the non-zero rj has d(rj) < d(a1) and we are done by induction.

Now use induction on n to show that A′ is equivalent to a matrix of the form
a2 . . . 0 . . . 0
...

. . .
... . . . 0

0 . . . ar . . . 0
0 . . . 0 . . . 0


However, if a1 divides every entry of A′ then it must divide every entry of PA′Q for any
P,Q. Hence a1 | a2 and A is equivalent to a matrix of the required form.
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7262 7. Application to linear algebra Spring 2018

If V is a K-vector space and T : V → V is a K-linear map, then we can regard V as
a K[X]-module by defining (

∑
aiX

i).v =
∑
aiT

i(v) where T 0(v) = v and T i+1(v) =
T (T i(v)). Note that K[X] is a PID, indeed it is a Euclidean domain with d(f) = deg f .

Lemma 7.1 Let Ā = {ē1, . . . , ēn} be a K-basis for V and let N be a free K[X]-
module with basis A = {e1, . . . , en}. Let A = [T ]Ā,Ā and define ψ : N → N so that
[ψ]A,A = XIn − A, and ϕ : N → V so that ϕ(ei) = ēi. Then the sequence

N
ψ−→N

ϕ−→V −→ 0

is exact.

Proof. We need to show ϕ is surjective and Imψ = Kerϕ. First, ϕ is surjective since
Imϕ contains the elements ēi of a basis. Now ψ(ei) = Xei −

∑
ajiej, so ϕψ(ei) =

T (ēi) −
∑
ajiēj =

∑
ajiēj −

∑
ajiēj = 0. Since this holds for each ei, ϕψ = 0 and

Kerϕ ⊇ Imϕ. Now assume v =
∑
ci(X)ei ∈ Kerϕ. If k ≥ 0 then Xkei − Akei =

(X − A)(Xk−1 + · · · + Ak−1)ei = (X − A)u = ψ(u) for some u, where we regard the
matrix A as a linear map on N . Thus (ci(X) − ci(A))ei ∈ Imψ, so there exists u ∈ N
such that v = ψ(u) +

∑
ci(A)ei = ψ(u) +

∑
c′iei with c′i ∈ K. But then 0 = ϕ(v) =

ϕψ(u) + ϕ(
∑
c′iei) =

∑
c′iēi. Thus c

′
i = 0 and v = ψ(u) ∈ Imψ. Hence Kerϕ ⊆ Imψ.

Corollary 7.2 Write XIn−A in Smith Normal Form over the PID K[X] and assume
the diagonal elements are a1(X), . . . , ar(X). Then r = n and V ∼= K[X]/(a1) ⊕ · · · ⊕
K[X]/(an) as a K[X]-module.

Proof. We choose bases of N so that the matrix of ψ is in Smith Normal Form. Then
under this isomorphism N ∼= K[X] ⊕ · · · ⊕ K[X] and Imψ is (a1) ⊕ · · · ⊕ (ar) and
N/ Imψ ∼= K[X]/(a1) ⊕ · · · ⊕K[X]/(ar) ⊕K[X]n−r. But V ∼= N/ Imψ and V is finite
dimensional as a K-vector space. Thus n = r and the result follows.

Note: Typically some of the ais will be units (constants) in K[X]. The invariant factors
are just the non-constant ais.

The minimal polynomial mA of an n × n matrix A is a monic polynomial such that
mA(A) = 0 and for all f ∈ K[X], if f(A) = 0 then mA | f . The characteristic
polynomial of A is det(XIn − A).
Note: The set of f ∈ K[X] such that f(A) = 0 is an ideal and K[X] is a PID, so such
an mA exists, however mA need not be irreducible.

We shall use basic properties of the determinant, detA, of a matrix A. This is defi-
ned for any square matrix with entries in a commutative ring, and satisfies detAB =
detA detB. For diagonal matrices, detA is the product of the diagonal entries. In
particular det In = 1.

Lemma 7.3 If A is an n × n matrix with entries in the field K then the minimal
polynomial of A is mA(X) = ar(X) = lcm{ai(X)}, the last monic invariant factor of
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the K[X]-module given by the action of A on Kn. The characteristic polynomial is
det(XIn − A) = a1 . . . ar, the product of the monic invariant factors.

Proof. By multiplying by units (constants) in K[X], we may assume ai(X) are monic.
The matrix f(A) corresponds to multiplication by f(X) in the module K[X]/(a1) ⊕
· · · ⊕ K[X]/(ar). But this is the zero map iff ai | f for all i. Thus mA is the lcm of
the ais, which is just ar (up to multiplication by a constant). Sine mA and ar are both
monic, mA = ar. For the characteristic polynomial, det(XIn − A) = det[ψ]A,A where
ψ is the map in Lemma 7.1. We saw in Corollary 7.2 that we could write ψ in Smith
normal form so that [ψ]B,C is diagonal, with entries ai(X) (or monic units, i.e., 1s) on
the diagonal. Thus det[ψ]B,C = a1 . . . ar. Now [1]A,B[1]B,A = In, so det[1]A,B det[1]B,A = 1
and det[1]A,B is a unit in K[X], i.e., a constant. Similarly det[1]C,A is a constant. Thus as
[ψ]A,A = [1]A,B[ψ]B,C[1]C,A, det[ψ]A,A = det[1]A,B det[ψ]B,C det[1]C,A is a constant multiple
of a1 . . . ar. Since the characteristic polynomial is monic, it must be a1 . . . ar.

Corollary (Cayley-Hamilton Theorem) If f(X) = det(XIn − A) then f(A) = 0.

Proof. mA = ar | a1 . . . ar = f .

Two n × n matrices A and B are similar iff there exists an invertible matrix P such
that B = PAP−1.

Exercise: A and B are similar if there exists an R-linear map ϕ : N → N and bases
A,A′ of N such that A = [ϕ]A,A and B = [ϕ]A′,A′ .

Let K be a field and f(X) = Xn + fn−1X
n−1 + · · · + f0 ∈ K[X] a monic polynomial of

degree n. The companion matrix to f is the n× n matrix

C(f) =


0 0 . . . −f0
1 0 . . . −f1
0 1 . . . −f2
0 0 . . . −fn−1


Theorem (Rational Canonical Form) Any n×n matrix A over a field K is similar
to a matrix of the form 

C(a1) 0 . . . 0
0 C(a2) . . . 0
...

...
. . .

...
0 0 . . . C(ar)


where ai(X) ∈ K[X] are the monic invariant factors of the K[X] module given by the
the action of the linear map A on the K-vector space Kn.

Proof. Using the isomorphism V ∼= K[X]/(a1)⊕ · · · ⊕K[X]/(ar), it is enough to show
that the linear map given by multiplication by X on K[X]/(ai) has matrix C(ai) in the
K-basis {1, X,X2, . . . , Xdeg ai−1} of K[X]/(ai).
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The Jordan block Jn(λ) is the n× n matrix
λ 0 0 . . . 0
1 λ 0 . . . 0
0 1 λ . . . 0
...

...
...

. . .
...

0 0 0 . . . λ


Theorem (Jordan Normal Form) Suppose mA(X) splits in K[X]. The A is similar
to a matrix of the form 

Jn1(λ1) 0 . . . 0
0 Jn2(λ2) . . . 0
...

...
. . .

...
0 0 . . . Jnr(λr)


where (X − λi)ni are the elementary factors of the K[X]-module given by the action of
A on Kn.

Proof. Write V ∼= K[X]/(pn1
1 )⊕ · · · ⊕K[X]/(pnr

r ) in terms of elementary divisors. The
minimal polynomial is the lcm of all the pni

i , so each pi must be a product of linear
factors. But pi is irreducible, so pi = X − λi for some λi ∈ K. The result follows as
Jn(λ) is the matrix of the linear map given by multiplication by X on the K-vector space
K[X]/((X − λ)n) with respect to the basis {1, (X − λ), . . . , (X − λ)n−1}.

Corollary 7.4 A matrix is similar to a diagonal matrix iff mA(X) splits into distinct
linear factors in K[X].

Proof. Similar matrices have the same minimal polynomial, and the minimal polynomial
of a diagonal matrix is just

∏
(X − λi) with the product over the distinct diagonal

entries λi. For the converse, if the minimal polynomial splits into distinct linear factors,
then the Jordan normal form exists and is diagonal since all the elementary divisors
(being factors of mA) are linear.
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7262 8. Tensor products Spring 2018

For this section we shall assume R is a commutative ring.

If N1, N2,M are R-modules, a bilinear map ϕ : N1 × N2 → M is a map such that
ϕ(λx + µy, z) = λϕ(x, z) + µϕ(y, z) and ϕ(x, λz + µw) = λϕ(x, z) + µϕ(x,w) for all
λ, µ ∈ R, x, y ∈ N1, z, w ∈ N2. In other words, it is R-linear in each variable if we keep
the other variable fixed.

The tensor product of N1 and N2 is an R-module N1 ⊗R N2,
and a bilinear map ⊗ : N1 × N2 → N1 ⊗R N2 such that the
following universal property holds. If M is any module and
ϕ : N1×N2 →M is bilinear, then there exists a unique R-linear
map h : N1 ⊗R N2 → M such that h(x ⊗ y) = ϕ(x, y) for all
x ∈ N1, y ∈ N2. One should think of x⊗ y as a ‘product’ of an
element of N1 with an element of N2

N1 ×N2
ϕ→ M

⊗↘ ↑h
N1 ⊗N2

Theorem 8.1 The tensor product of two modules exists and is unique up to isomor-
phism.

Proof. (Uniqueness) Let ⊗ : N1×N2 → N1⊗RN2 and ⊗′ : N1×
N2 → N1 ⊗′

R N2 be two tensor products. Taking ϕ = ⊗′ and
using the fact that ⊗ is a tensor product gives a map h : N1 ⊗R
N2 → N1⊗′

RN2 such that h(x⊗y) = x⊗′ y. Similarly there is a
map g : N1⊗′

RN2 → N1⊗RN2 such that g(x⊗′ y) = x⊗y. Now
take ϕ = ⊗ and ⊗ as the tensor product. There exists a unique
map f : N1 ⊗R N2 → N1 ⊗R N2 such that f(x ⊗ y) = x ⊗ y.
However, both f = g ◦h and f = 1 satisfy this condition. Hence
g ◦ h = 1. Similarly h ◦ g = 1 and so h and g are isomorphisms.

N1 ⊗N2
⊗↗ ↑ g

N1×N2
⊗′
→ N1 ⊗′ N2

⊗↘ ↑h
N1 ⊗N2

Proof. (Existence) Let F =
⊕

i∈N1×N2
R be a free module with basis {ex,y : x ∈ N1, y ∈

N2}. Let K ≤ F be the submodule generated by all elements of the form

λex,z + µey,z − eλx+µy,z, λex,z + µex,w − ex,λz+µw
where λ, µ ∈ R, x, y ∈ N1, z, w ∈ N2. Define N1⊗RN2 to be F/K and let ⊗ : N1×N2 →
N1 ⊗R N2 be defined as x⊗ y = ex,y +K ∈ F/K. We now check the various conditions.
1. ⊗ : N1 ×N2 → N1 ⊗R N2 is bilinear.
(λx + µy) ⊗ z = eλx+µy,z + K = (λex,z + µey,z) − (λex,z + µey,z − eλx+µy,z) + K =
(λex,z+µey,z)+K = λ(x⊗ z)+µ(y⊗ z). Similarly x⊗ (λz+µw) = λ(x⊗ z)+µ(x⊗w).
2. If ϕ : N1×N2 →M is bilinear then ∃h : N1⊗RN2 →M such that h(x⊗ y) = ϕ(x, y).
Define h′ : F →M on the basis ex,y of F by h′(ex,y) = ϕ(x, y). Clearly K ≤ Kerh′ so h′

induces a map h : F/K →M by h(z +K) = h′(z). Now h(x⊗ y) = h′(ex,y) = ϕ(x, y).
3. This h is unique.
Since any element of F is a linear combination of the ex,y, any element of N1⊗N2 = F/K
is a linear combination of the x ⊗ y = ex,y +K. Thus h is determined on a generating
set, and so is unique.
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The construction above is quite general, but not very easy to work with. In many
important cases it is possible to give easier descriptions of the tensor product. In each
case all we need to do to show that a description is correct is to show that it satisfies the
universal property of a tensor product (by uniqueness of the tensor product).

Theorem 8.2 If N and M are free R-modules with bases {e1, . . . , en} and {f1, . . . , fn}
respectively, then N ⊗RM is free with basis B = {ei ⊗ fj : 1 ≤ i ≤ n, 1 ≤ j ≤ m}.
Proof. We know from the proof of the previous theorem that N⊗M is generated by the
x⊗ y. But if we write x =

∑
λiei, y =

∑
µjfj then x⊗ y =

∑
ij λiµj(ei ⊗ fj). Hence B

generates N⊗M . Now suppose
∑
λij(ei⊗fj) = 0. Fix i0 and j0 and consider the bilinear

map ϕ : N ×M → R given by ϕ(
∑
µiei,

∑
νjfj) = µi0νj0 . It is easily checked that this

is a well-defined bilinear map. But then there is an R-linear map h : N ⊗M → R with
h(
∑
λij(ei ⊗ fj)) =

∑
λijh(ei ⊗ fj) =

∑
λijϕ(ei, fj) = λi0,j0 . If

∑
λij(ei ⊗ fj) = 0 then

λi0,j0 = 0. Since this holds for all i0, j0 the ei ⊗ fj are linearly independent.

Note: C⊗C C ∼= C, but C⊗R C ∼= R2 ⊗R R2 ∼= R4, but C ̸∼= R4, so the subscript on the
⊗ is important.

Theorem 8.3 If N is an R-module and I is an ideal of R then N ⊗R R/I ∼= N/IN .

Proof. Define ⊗ : N ×R/I → N/IN by x⊗ (r+ I) = rx+ IN . First we show that this
is well-defined. If r′+I = r+I then r′−r ∈ I, so r′x−rx ∈ IN and rx+IN = r′x+IN .
We then check it is bilinear, which is easy. Now, if ϕ : N × R/I → M is bilinear, define
h′ : N → M by h′(x) = ϕ(x, 1 + I). This is R-linear. If x ∈ IN then x =

∑
aixi with

ai ∈ I and xi ∈ N . Then h′(x) = ϕ(
∑
aixi, 1+ I) =

∑
aiϕ(xi, 1+ I) =

∑
ϕ(xi, ai+ I) =∑

ϕ(xi, 0 + I) = 0. Thus IN ≤ Kerh′ and h′ induces a map h : N/IN → M such that
h(x×(r+I)) = h(rx+IN) = h′(rx) = ϕ(rx, 1+I) = rϕ(x, 1+I) = ϕ(x, r+I). Conversely
if h : N/IN →M has this property then h(x+IN) = h(x⊗(1+I)) = ϕ(x, 1+I) = h′(x)
and so h is uniquely determined.

Exercises
1. Show that any bilinear map Rn×Rm → R can be represented by a unique matrix
A so that ϕ(u, v) = uTAv. (Elements of Rn, Rm are considered as column vectors
and T denotes transpose.)

2. Show that Z/nZ⊗Z Z/mZ ∼= Z/ gcd(n,m)Z.
3. Show that Q/Z⊗Z Q/Z = 0.

4. If f : N → N ′ and g : M → M ′ are R-linear, show that there exists a unique
R-linear map f ⊗ g : N ⊗RM → N ′⊗RM ′ such that (f ⊗ g)(x⊗ y) = f(x)⊗ g(y).

5. Show that tensor products are ‘commutative’: N ⊗RM ∼= M ⊗R N .

6. Show that tensor products are ‘associative’: N1⊗R (N2⊗RN3) ∼= (N1⊗RN2)⊗RN3.

7. Show that tensor products are ‘distributive’ over direct sums: N ⊗R (M ⊕M ′) ∼=
(N ⊗RM)⊕ (N ⊗RM ′).
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7262 9. Extension of Scalars Spring 2018

An R-algebra is a ring S with a ring homomorphism i : R→ S such that Im i is in the
center of S.

Note: The center of S is the set of elements z ∈ S such that zs = sz for all s ∈ S, so if
the ring S is commutative then Im i is automatically in the center.

Throughout this section we shall assume all rings are commutative.

Examples

1. Any ring R is a Z-algebra.
2. If R is a subring of a commutative ring S then S is an R-algebra.

3. If I is an ideal of R then R/I is an R-algebra. The polynomial ring R[X] is an
R-algebra. If S is a multiplicative subset of R then S−1R is an R-algebra. In
particular, if R is an ID then the field of fractions of R is an R-algebra.

4. If S is anR-algebra then it is also anR-module with scalar multiplicationR×S → S
given by λ.x = i(λ)x. More generally, if M is an S-module then it is also an R-
module with scalar multiplication given by λ.x = i(λ)x, λ ∈ R, x ∈M .

One can define R-algebra homomorphisms, sub-R-algebras, quotient R-algebras etc., as
for rings with the extra condition that the i maps are preserved, e.g., if i1 : R → S1,
i2 : R → S2 are R-algebras then an R-algebra homomorphism is a ring homomorphism
f : S1 → S2 such that f(i1(λ)) = i2(λ).

Theorem 9.1 If N is an R-module and S is an R-algebra, then S⊗RN is an S-module.

Proof. Define for λ, µ ∈ S, λ(µ⊗x) = (λµ)⊗x and extend to S⊗N linearly: λ(
∑
µi⊗

xi) =
∑
λµi ⊗ xi. We need to check that this is well-defined. Fix λ ∈ S and consider

the map ϕλ : S × N → S ⊗ N given by ϕλ(µ, x) = (λµ) ⊗ x. This map is bilinear
(here we need that scalar multiplication by R commutes with S), so gives a unique map
hλ : S ⊗ N → S ⊗ N such that hλ(µ ⊗ x) = (λµ) ⊗ x. It is not hard to check that
hλλ′ = hλ ◦ hλ′ and hλ+λ′ = hλ + hλ′ . From this it is simple to check that this defines a
scalar multiplication on S ⊗R N and S ⊗R N is an S-module.

Examples

1. R/I is an R-algebra (i = π is the projection map), so for any R-module M we can
turn R/I ⊗RM =M/IM into an R/I-module.

2. If M ∼= Rn is a free R-module then S ⊗R M ∼= Sn is a free S-module of the
same rank. For example, one can turn a real n-dimensional vector space V into a
complex n-dimensional vector space C ⊗R V (but 2n-dimensional as an R-vector
space). R-linear maps f : U → V become C-linear maps 1 ⊗ f : C ⊗ U → C ⊗ V
(with the same matrix as f if one uses the obvious new bases {1⊗ ei}).
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Let R be a commutative ring and S a multiplicative subset of R, so 1 ∈ S and a, b ∈ S
imply ab ∈ S. Let M be an R-module. Define S−1M to be the set M × S/ ∼ where
(m, s) ∼ (m′, s′) iff ∃u ∈ S : us′m = usm′. Write m

s
for the equivalence class of (m, s).

Lemma 9.2 S−1M is an S−1R-module (and hence also an R-module).

Proof. (sketch) Addition is defined by m
s
+ m′

s′
= s′m+sm′

ss′
, scalar multiplication is defined

by r
s
m′

s′
= rm′

ss′
. One needs to check to following: 1) ∼ is an equivalence relation, 2) + is

well-defined, 3) (S−1M,+) is an abelian group (+ is associative, commutative, identity 0
1
,

inverses −m
s
= −m

s
), 4) scalar multiplication is well-defined, 5) S−1M is an S−1R-module

(multiplication distributes over addition both ways, is associative, and 1
1
m
s
= m

s
).

Theorem 9.3 If S is a multiplicative set and M is an R-module then S−1R ⊗M ∼=
S−1M as an S−1R-module (or as an R-module).

Proof. (sketch) Define ⊗ : S−1R × M → S−1M by r
s
⊗ x = rx

s
. Check this is well-

defined (if r
s
= r′

s′
then rx

s
= r′x

s′
) and is bilinear. If ϕ : S−1R × M → N is bilinear

and h( r
s
⊗ x) = ϕ( r

s
, x) then h(x

s
) = ϕ(1

s
, x) is uniquely determined. Conversely define

h(x
s
) = ϕ(1

s
, x) and show that this is well-defined, R-linear, and h( r

s
⊗ x) = h( rx

s
) =

ϕ(1
s
, rx) = rϕ(1

s
, x) = ϕ( r

s
, x). Finally, check that the scalar multiplication by S−1R

agrees on S−1M with that on S−1R⊗M .

Theorem 9.4 If S1 and S2 are two R-algebras then S1 ⊗R S2 can be made into an
R-algebra with multiplication (s1 ⊗ s2)(s′1 ⊗ s′2) = s1s

′
1 ⊗ s2s′2.

Proof. S1 and S2 are R-modules, so S1⊗R S2 is an R-module. Thus we have an abelian
group structure under + and an R-linear map i : R→ S1⊗R S2 given by i(λ) = λ(1⊗1).
This will be a ring homomorphism if the multiplication in S1 ⊗R S2 is defined as above.
It is therefore enough to show that the multiplication is well-defined, associative, has
identity 1⊗ 1, and is distributive over +.

Fix s1, s2 and define ϕs1,s2 : S1 × S2 → S1 ⊗R S2 by ϕs1,s2(s
′
1, s

′
2) = s1s

′
1 ⊗ s2s′2. This is

R-bilinear. Then there exists an R-linear hs1,s2 ∈ HomR(S1⊗S2, S1⊗S2) with hs1,s2(s
′
1⊗

s′2) = s1s
′
1⊗s2s′2. Now HomR(. . . ) is an R-module and the map h : S1×S2 → HomR(S1⊗

S2, S1 ⊗ S2) given by (s1, s2) → hs1,s2 is R-bilinear (check this). Hence there is a map
g : S1 ⊗ S2 → HomR(S1 ⊗ S2, S1 ⊗ S2) with g(s1 ⊗ s2)(s

′
1 ⊗ s′2) = s1s

′
1 ⊗ s2s

′
2. Define

multiplication on S1⊗R S2 by αβ = g(α)(β). The axioms can be checked easily from the
formula for (s1 ⊗ s2)(s′1 ⊗ s′2) (Note: a typical element of S1 ⊗R S2 is a sum of elements
of the form s1 ⊗ s2).

Exercises
1. Show that R[X]⊗R R[Y ] ∼= R[X,Y ] as an R-algebra. [Hint: f ⊗ g 7→ f(X)g(Y ).]

2. Let R be an ID with field of fractions K. If M is an R-module then rkRM =
dimK(K ⊗RM) (where we define rkRM as the size of the largest R-linearly inde-
pendent subset of M).

17
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A multilinear map ϕ : Mk → N is a map that is R-linear in each variable, i.e.,
∀i : ϕ(x1, . . . , λxi + µx′i, . . . , xk) = λϕ(x1, . . . , xi, . . . , xk) + µϕ(x1, . . . , x

′
i, . . . , xk). The

multilinear map ϕ is symmetric if ϕ(x1, . . . , xk) = ϕ(xπ(1), . . . , xπ(k)) for all permutati-
ons π ∈ Sk. The map ϕ is skew-symmetric if ϕ(x1, . . . , xk) = sgn(π)ϕ(xπ(1), . . . , xπ(k))
where sgn(π) = ±1 is the sign of the permutation π. The map ϕ is alternating if
ϕ(x1, . . . , xk) = 0 whenever xi = xj for some i ̸= j.

Exercise: Show that alternating always implies skew-symmetric and skew-symmetric
implies alternating provided 2x = 0⇒ x = 0 in N .

Theorem 10.1 If M is an R-module and k ≥ 0 then there exists modules T k(M),
(resp. Symk(M),

∧k(M)), and multilinear (resp. symmetric, alternating) maps ψ : Mk →
T k(M) (resp. Symk(M),

∧k(M)), such that for any multilinear (resp. symmetric, alter-
nating) map ϕ : Mk → N there exists a unique R-linear map h such that h ◦ ψ = ϕ.

Proof. (sketch) Let T 0(M) = R and inductively define T k+1(M) = T k(M) ⊗R M , so
that T k(M) is the tensor product of k copies of M . The Theorem for T k(M) holds
by induction on k and the universal property of tensor products. For symmetric maps,
define Symk(M) = T k(M)/Ck(M), where Ck(M) is the submodule of T k(M) generated
by elements of the form (x1⊗x2⊗· · ·⊗xk)− (xπ(1)⊗xπ(2)⊗· · ·⊗xπ(k)), xi ∈M , π ∈ Sk,
and ψ(x1, . . . , xk) = (x1 ⊗ · · · ⊗ xk) + Ck(M). It is easy to check that ψ is symmetric,
h exists (use the result for T k(M) and show that Kerh ⊆ Ck(M)), h is unique (the
x1 ⊗ · · · ⊗ xk + Ck(M) generate Symk(M)). For alternating maps, define

∧k(M) =
T k(M)/Dk(M), where Dk(M) is the submodule of T k(M) generated by elements of the
form x1 ⊗ · · · ⊗ xk with xi = xj for some i ̸= j. The proof is similar.

Example T 0(M) ∼= Sym0(M) ∼=
∧0(M) ∼= R, T 1(M) ∼= Sym1(M) ∼=

∧1(M) ∼= M .

For all i, j ≥ 0 there are bilinear maps

⊗ : T i(M)× T j(M)→ T i+j(M),

⊙ : Symi(M)× Symj(M)→ Symi+j(M),

∧ :
∧i(M)×

∧j(M)→
∧i+j(M),

The map ⊗ is the usual tensor product, using the associativity of ⊗ so that T i+j(M) ∼=
T i(M)⊗RT j(M). The other two maps are the maps corresponding to ⊗ on the quotient
spaces Symk(M) and

∧k(M) (check these are well defined).

Let T (M) =
⊕∞

k=0 T k(M), Sym(M) =
⊕∞

k=0 Sym
k(M),

∧
(M) =

⊕∞
k=0

∧k(M). Then
by extending ⊗, ⊙, ∧ linearly we get multiplication maps on T (M), Sym(M),

∧
(M).

Lemma 10.2 T (M), Sym(M),
∧
(M) are R-algebras under the multiplication maps ⊗,

⊙, ∧ respectively.
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Note: ⊗, ⊙, ∧ are all associative and ⊙ is symmetric. However ∧ is not skew-symmetric,
since for example a, b, c ∈M ∼=

∧1(M), (a ∧ b) ∧ c = −a ∧ c ∧ b = +c ∧ (a ∧ b).

Theorem 10.3 Let M be a free R-module of rank n with basis {e1, . . . , en}. then
T k(M) is free of rank nk with basis {ei1 ⊗ · · · ⊗ eik : 1 ≤ i1, i2, . . . , ik ≤ n},
Symk(M) is free of rank

(
n+k−1

k

)
with basis {ei1⊙ . . .⊙eik : 1 ≤ i1 ≤ · · · ≤ ik ≤ n},∧k(M) is free of rank

(
n
k

)
with basis {e11 ∧ · · · ∧ eik : 1 ≤ i1 < · · · < ik ≤ n}.

Example Suppose R = R, M = R3, then
∧
(M) is an 8-dimensional space which is

the direct sum of
∧0(M) ∼= R (1-dim space of scalars),

∧1(M) ∼= R3 (3-dim space of
vectors),

∧2(M) ∼= R3 (3-dim space of bivectors, or pseudovectors), and
∧3(M) ∼= R

(1-dim space of trivectors, or pseudoscalars). Suppose we pick a basis i, j, k of M .
Then

∧
(M) has basis

{1, i, j, k, j ∧ k, k ∧ i, i ∧ j, i ∧ j ∧ k}
Define ĩ = j ∧ k, j̃ = k ∧ i, k̃ = i ∧ j. The map ∧ :

∧1(M)×
∧1(M)→

∧2(M) is

(x1i+ x2j+ x3k) ∧ (y1i+ y2j+ y3k) = (x2y3 − x3y2)̃i+ (x3y1 − x1y3)̃j+ (x1y2 − x2y1)k̃.
If we compose this map with the isomorphism

∧2(M) →
∧1(M) given by sending ĩ, j̃,

k̃ to i, j, k respectively, then this is just the vector cross product on R3.

The map ∧ is called the exterior product and is very important in differential geometry.
For real vector spacesM , the vectors

∧1(M) can be thought of as oriented line segments,
the bivectors

∧2(M) as oriented area elements, etc..

Theorem 10.4 If f : M → N is an R-linear map then there are R-linear maps

• T k(f) : T k(M)→ T k(N); T k(f)(x1 ⊗ · · · ⊗ xk) = f(x1)⊗ · · · ⊗ f(xk),
• Symk(f) : Symk(M)→ Symk(N); Symk(f)(x1 ⊙ . . .⊙ xk) = f(x1)⊙ . . .⊙ f(xk),
•
∧k(f) :

∧k(M)→
∧k(N);

∧k(f)(x1 ∧ · · · ∧ xk) = f(x1) ∧ · · · ∧ f(xk),
Proof. Use universal properties.

Theorem 10.5 If M is free of rank n and f : M → M is R-linear, then the map∧n(M) is given by multiplication by det f on the rank 1 module
∧nM .

Proof. SupposeM has basis {e1, . . . , en}, then
∧n(M) is of rank 1 with basis {e1∧· · ·∧

en}. If f has matrix aij with respect to the basis {e1, . . . , en} then
∧n(f)(e1∧· · ·∧en) =

f(e1) ∧ · · · ∧ f(en) = (
∑

i1
ai11ei1) ∧ · · · ∧ (

∑
in
ainnein) =

∑
i1,i2,...,in

ai11ai22 . . . ainnei1 ∧
· · · ∧ ein . However, if ii = ij for i ̸= j then ei1 ∧ · · · ∧ ein = 0. Hence we can assume
ij = π(j) for some permutation π ∈ Sn. Also eπ(1) ∧ · · · ∧ eπ(n) = sgn(π)e1 ∧ · · · ∧ en.
Hence

∧n(f) acts as multiplication by
∑

π∈Sn
sgn(π)aπ(1)1 . . . aπ(n)n = det(aij).

This theorem can be used as a definition for the determinant of a linear map. Various
properties of det become clear using this definition. For example det f is independent of
the basis, and det(fg) = (det f)(det g) follows from

∧n(f ◦ g) =
∧n(f) ◦

∧n(g).
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