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Abstract

We show that if G is a graph on at least 3r + 4s vertices with
minimum degree at least 2r 4+ 3s, then G contains r + s vertex disjoint
cycles, where each of s of these cycles either contain two chords, or
are of order 4 and contain one chord.
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1 Introduction and Main Result

The following beautiful conjecture of Bialostochi, Finkel, and Gyarfas ap-
pears in [1].
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Conjecture 1. Let r, s be nonnegative integers and let G be a graph with
\V(G)| > 3r 4+ 4s and minimum degree §(G) > 2r + 3s. Then G contains a
collection of r cycles and s chorded cycles, all vertex disjoint.

The complete bipartite graph Ko, 435—1n—2r—3s4+1 shows that the minimum
degree cannot be lowered when n > 4r 4 6s — 2.

The conjecture is a generalization of well known results of Pdsa, and of
Corrddi and Hajnal. Pdsa proved (see [7, problem 10.2]) that any graph
with minimum degree at least 3 contains a chorded cycle and Corradi and
Hajnal [3] proved that any graph of minimum degree at least 2r of order
n > 3r contains r vertex disjoint cycles.

The purpose of this article is to show that a stronger result than that given
in the conjecture is true. We prove the following theorem.

Theorem 2. If G is a simple graph on |V(G)| > 3r + 4s wvertices with
d(G) > 2r + 3s, then G contains r + s vertex disjoint cycles, each of s of
them either with two chords, or a Cy with one chord.

It is likely the case that among the chorded “long” cycles more than two
chords will be present, and that one can insist on two chords even in the Cys,
but our method of proof does not establish this.

It has come to our attention that Conjecture 1 has been proved by Gao,
Li, and Yan and appears in [4], but they do not address the stronger result
given in our theorem. Also a degree sum condition is used by Chiba, Fujita,
Gao, and Li in [2], and neighborhood union conditions are used by Gao,
Li, and Yan [5], and by Qiao [8], to realize disjoint chorded cycles. Finally,
independently of our results, Gould, Hirohata, and Horn [6] proved a result on
the existence of disjoint doubly chorded cycles under a degree sum condition.
This result however only applies to the r = 0 case with |V (G)| > 6s.

The proof of our theorem is based on several technical theorems and lemmas,
the last two of which are in themselves of special interest. Omne of these
(Theorem 12) generalizes the result of Pdsa mentioned earlier by showing
that a graph with minimum degree 3 contains a cycle with two chords.

We write as usual P,, C,, K,, or E, for a path, cycle, complete graph,
or empty graph respectively on n vertices. When the number of vertices is



unspecified we shall write for example P, or C,. We denote by C;'* any cycle
of length n with at least k additional chords, and K, * the complete graph on
n vertices with at most k edges removed. If k = 1 then we write just C;} or
K, for brevity. Note that, for example, a C;'3 graph is also considered as a
special case of a CF2 graph. It will also be convenient to denote by C a graph
that is either a C? or a C;. We shall write G U H for the vertex disjoint
union of G and H, and G U H + ke for such a graph with k£ additional edges
added between G and H. We shall also use the notation H C G or G 2 H to
indicate that H is a subgraph of G, and H C G or G D H to indicate that H
is a non-spanning subgraph of G, i.e., a subgraph with |V (H)| < |V(G)|. For
example, the statement G D C indicates that G' contains a non-hamiltonian
cycle. We shall occasionally abuse notation by regarding a subgraph H C GG
also as a subset of vertices of G. So for example, we write G[H U v] instead
of GV (H)U{v}] for the subgraph induced by the vertices of H and an extra
vertex v € V(G).

The proof of Theorem 2 involves a number of technical theorems and lemmas,
the relevance of which only becomes apparent in the proof of Theorem 2.
Thus we shall first give the proof of Theorem 2 assuming these results, and
then state and prove them in the next section.

Proof of Theorem 2. Consider all possible decompositions of the graph G
into r 4+ s vertex disjoint subgraphs G;, 1 = 1,...,r + s, each subgraph being
of one of the following types

C*a C:_27 Cz_v K47 K57 Kﬁ_v K’7_37

and possibly an additional set S of unused vertices. By [3] there is a collection
of r+ s disjoint cycles in GG, so at least one such decomposition exists. Among
these decompositions, pick one with the minimal number of C,s. Say there
are r’ C,s and s’ = r+s—1' of the other subgraphs. If ' < r then we are done,
as each of the other graphs on this list contains (and hence can be replaced
with) a cycle while Ky, K5, K; and K- ? all contain a C; subgraph. Hence
we may assume r’ > r. Among the decompositions with this minimal 7/,
we shall take one of minimal weight, where the weight of a decomposition is
defined as the sum of certain weights assigned to each of the subgraphs G;.
The weights w(G;) assigned to these subgraphs are given in Table 1. Here
¢ is chosen so that 0 < ¢ < % and we regard a subgraph as a C only if it
fails to have enough chords to be a CI. We call such a decomposition with



Table 1: Weights of graphs (0 <& < 1).

Cn, n>3|n
CH2.n>5|n
Cr 4
K, 4 —4¢e
K 4 —be
Ky 4 — 6¢
K3 4—Te

this ' and minimal weight an optimal decomposition. Note that as we are
assuming for contradiction that »’ > r, there will always be at least one C,
in our optimal decomposition.

Claim 1: S = () in any optimal decomposition.

Proof of Claim 1. Suppose otherwise and pick v € S. By Lemma 4 below,
v can send at most 3 edges to any G; # C,, otherwise we could construct
a new decomposition replacing G; with a G, # C, of smaller weight, or
two Cjs, which on discarding a C, from our decomposition would result
in a decomposition with smaller 7. Similarly, by Lemma 3, v can send
at most 2 edges to any G; = C,. Let G} be one of the C, cycles. Then
d(v) < 2(r' = 1) + 3¢’ + dsue, (v) where dsug, (v) is the degree of v in the
subgraph G[S' U G4]. But d(v) > 2r+3s > 2r' + 35’ + 1. Thus dsug, (v) > 3
for every v € S. But then by Theorem 13, G[S U G] contains either a cycle
of smaller order than G, or a C}2, either of which could be swapped with
G to obtain a better decomposition. Thus S = 0. O

Claim 2: There are no C,s with n > 3 and no C;'*s with n > 4 in any
optimal decomposition.

Proof of Claim 2. Consider a subgraph G; with maximal weight in an opti-
mal decomposition of G. Suppose G; = C,, with n > 4. The sum of the
degrees dg, (v) over v € G is at most 2n + 2 as otherwise G; would have two
chords. If G; sends 2n + 1 edges to any G; = (., j # 1, then by Lemma 10
we can replace G; and G; in the decomposition with two disjoint Cys with
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smaller total weight (when n = 4) or a C, and a C] (when n > 5) giving a
decomposition with smaller /. Note that we are assuming G; has maximal
weight so that |V(G;)| < |V(G;)|. Again by Lemma 10, if G; sends 3n + 1
(>2n+1forn >5o0r > 11 for n = 4) edges to any G; = C! (including
K, = C? as a special case), then we can replace G; UG; with a C, UCT with
fewer total number of vertices and hence smaller total weight. If G; sends
3n+1 > 13 edges to a G; € { K, K }, then there must be some vertex v € G;
that sends at least 3 edges to ;. Then by Lemma 3, G[G; U v] contains a
shorter cycle C' than G;, while G; —v contains a K4, which has weight at most
2e more than G;. Replacing G; and G; in the decomposition by C' and this
K, gives a decomposition with at least 1 — 2¢ smaller weight. Now suppose
G; sends 3n+1 edges to G; = K7 3. Then at least one vertex v € G; sends at
least 4 edges to K7, so by Lemma 4 we can decompose G[v U G;] into two
C{s. Replacing G; and G; by these gives a decomposition with smaller 7.
Since S = (), and combining the above bounds, the sum of the degrees d(v)
in G of the vertices of G; is at most (2n+2)+2n(r' — 1) +3ns’ < (2r+3s)n,
so at least one vertex of (G; violates the minimum degree condition.

Now suppose the subgraph with maximal weight is G; = C'? for some n > 4.
As CF? 5 Cf and w(C5?) > w(C;) we may assume n > 6. The sum of the
degrees dg,(v) over v € G; is at most 3n as otherwise G; would have more
than n/2 chords and by Lemma 5 we could replace G; by a subgraph of G; of
smaller weight. If G; sends 2n + 1 edges to any G; = C, then by Lemma 10
we can replace G; UG, in the decomposition with a C, UCJ with fewer total
number of vertices and hence smaller weight. Note that |V (G;)| < |V(G))|
as G; has maximal weight. Similarly, if G; sends 3n+1 edges to any G; = C
(including K, = C;?) then, by Lemma 11, we can replace G; U G; with a
CI U Cf with fewer total number of vertices and hence smaller weight. If G;
sends at least 3n+1 > 19 edges to a G; € { K5, K }, then there must be some
vertex v € G; that sends at least 4 edges to G;. Then by Lemma 4, G[|G; U]
contains a Cf on fewer vertices than G;, while G;—v contains a K, which has
weight at most 2e more than G;. Replacing G; and G in the decomposition
by this Cf and K, gives a decomposition with at least 1 — 2 smaller weight.
Now suppose G; sends at least 3n+1 edges to G; = K, 3. Then some vertex
v € G; sends at least 4 edges to K,® so by Lemma 4 we can decompose
G[v U Gy] into two Cfs. Replacing G; U G; by these gives a decomposition
with smaller weight (8 versus n +4 — 7¢ > 10 — 7e > 9). Combining the
above bounds and using S = (), the sum of the degrees in G of the vertices of
G; is at most 2n1’ 4+ 3ns’ < (2r + 3s)n, so at least one vertex of G; violates



the minimum degree condition. O

By Claims 1 and 2, the optimal decomposition consists only of graphs in
the set {Cs, O, Ky, K5, K , K%} and the Gys cover all vertices of G. As
|\V(G)| > 3r + 4s and r' > r, we must have at least one subgraph G; €
{Ks, Ky, K;}. We now construct an “almost optimal” decomposition with
a set S of unused vertices with 1 < |S| < 3 and with no |[V(G;)| > 4
unless |S| = 3. If the optimal decomposition contains K;®, then remove
three vertices from it to produce a K,. The S will then consist of the three
removed vertices. If there is no K then remove one vertex from a K; to
produce a K3, or one from a K5 to produce a K4. Repeating this process
at most three times and placing the removed vertices in S, we obtain a
decomposition with a set S of unused vertices with either |S| = 3, or with
|S] < 3 and no |V(G;)| > 4. Note that although this decomposition no
longer has minimal weight, its weight is in all cases at most 3¢ larger than
the optimal decomposition, and it has the same value of r'. As " > 0 we
also have, say, G; = C3. We count the sum of the degrees of the vertices in
S UGy with the vertices in S weighted by a factor of 3/|5], i.e., we estimate

E = %Zd(v) + Z d(v).

ves veV(Gr)

Suppose G; = (3, j > 1. Each v € S can send only one edge to Gj,
otherwise G[v U G;] would contain a C; that we could swap with G; giving
a decomposition with smaller 7 (and hence a smaller ' than the optimal
decomposition). Clearly Gi = C3 can send at most 9 edges to G; = Cs, so
we have a contribution of at most 3+ 9 = 12 to F from edges from S U G,
to this Gj.

Now suppose G; € {C{, K,} and suppose further that there is a contribution
to E of more than 18 from edges between S U G; and G;. Clearly there are
at most 12 edges between G; = C5 and G, so there must be a contribution
of more than 6 to E from the edges between S and G;. Thus there exists
v € S which sends more than 2 edges to G;. If G; = Cf and GlvUG,] 2 K,
then we can swap G; with this K4, decreasing the weight by 4¢. This would
give a better decomposition than the optimal one, a contradiction. Hence
we may assume v is joined to both degree 2 vertices and one of the degree
3 vertices in G; (see Figure 1). Any single vertex u of G, can be removed
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Figure 1: If H = {v} UC} +3e 2 K, then for any u € Cf —vo, H—u 2 C}.

from GJv U G}] yielding a Cf except possibly for vy, a degree 3 vertex of G,
that is joined to v. If G; = K then any vertex of Gv U G|| can be removed
yielding a C;” or K4. Thus if there are more than 3+ 1+ 1+ 1 = 6 edges
from G; to G we can find a v € Gj — v joined to two vertices of G; forming
a Cy on GyUwu and a CJ on v UG, — u. Replacing G; U G; with these two
Cs gives a decomposition with smaller 7/, so we may assume that there are
at most 6 edges from G to G;. But there at most 4 edges from each v € S
to G;. Thus we have a contribution of at most 3 x 4 46 = 18 to E from the
edges to Gj.

Now suppose G; € {Ks5, Ky, K;*}. Then |S| = 3. By Lemma 6 there can
be at most 12 + 5 = 17 edges from S U Gy to a K35, otherwise we could find
two Cfs in G[S UGy U G,] which could be swapped with G; U G; giving a
decomposition with smaller r’. Similarly there are at most 12+ 6 = 18 edges
from SUG; to a K and at most 9 +7 = 16 edges from S UG, to a K.
Hence there is a contribution of at most 18 to E from edges to this G;.

Each v € S can send at most one edge to G, otherwise we would have a C;
which could be swapped with Gy, and each v € S can send at most |S|—1 < 2
edges to S. Thus the contribution to E from edges within G[S U G4] is at
most 6 from edges in G4, plus 6 from edges between G; and S, and 6 from
edges in S. Equality occurs only if |S| = 3 and G[S U G4] is two triangles
with three edges joining them. But in this case either G[S U G;] 2 C4?
(if the three edges form a matching) or G[S U G| 2 Cf (otherwise). This
G$? or Cf can be swapped with G reducing 7/, a contradiction. Hence the
contribution to £ from edges in G[S U G4] is at most 17.

In total, we have E < 12(r" — 1) + 185’ 4+ 17 < 6(2r + 3s) contradicting the
fact that £ > 66(G) > 6(2r 4+ 3s). Thus a decomposition exists with 7’ = r
and the theorem is proved. O



2 Technical lemmas

Lemma 3. If G = E; UC,, + 3e then either G O C,, for some m < n or
n=3and G = Kj.

Proof. Let Ey = {v}. If v sends three edges to C),, then the shortest arc
between neighbors of v on C,, is of edge length at most n/3 and hence there
is a cycle through v of length at most n/3 4+ 2. If n > 3 then we are done as

n/3+2 < n. If n =3 then G = Kj. O

Lemma 4. Forn > 4, E; UC? +4e D C}, for some m < n. Also Ey U
Oj+4€ D) K4, E1UK4—|—4€ = K57 E1UK5+4€ = Kg, E1UK67+4€ = K;S,
and By U K;® +4e 2 Cf U CY.

Proof. Suppose first that H = C? with n > 4 and write £, = {v}. Let
vv;, 1 =1,...,4, be the edges from v to H with v; ordered cyclically around
the main cycle C' of H. If the arc between any consecutive v; on C', say
vy and vy, contains at least two interior vertices, then vvy ... vy ... v3... V4V
is a shorter cycle with two chords vvy, vvs (Figure 2(a)). Thus we may
assume there is at most one vertex of C' between each consecutive pair of v;,
say C' = v1u1v2uv3uzvsusv; where some of the u; may not exist. If three
consecutive v; exist with no u; between them then they form a C) with v
(Figure 2(b)). Hence we may assume that no two consecutive u; are both

missing.

Now consider the chords of H. If one of these chords joins a pair of consec-
utive v;s, say vivy then {v, vy, v9,u;} induces a C; (Figure 2(c)). If one of
the chords joins opposite v;, say vivs, then vvjuvousv3v is cycle with two
chords v1v3 and vvy (Figure 2(d)). Note that either ug or uy exists, so this
cycle has length less than n. If a chord joins a u; to a vj, say u; to vs then
VUIUV3ULV9V 1S a cycle with chords uyve and vvg (Figure 2(e)). Once again,
either uz or uy exists so this cycle has length less than n. Thus we may
assume both chords are between u; vertices. If two consecutive u; are joined
by a chord, say wujus, then vviujvousvsv is a shorter cycle with chords vv,
and uyus (Figure 2(f)). The only remaining case is when both ujus and uguy
are chords. But then vvu;ugvsusvav is a shorter cycle with two chords wyvy
and vvs (Figure 2(g)).
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Figure 2: Finding H' in Lemma 4. Stars indicate possible presence of vertices.

If H = C; then E,UH +4e contains a K (see Figure 1). Also it is clear that
Ey UK +4e =Ky, EyUKs+4e = K;, and Ey U K +4e = K;°. Finally,
suppose H = K ?. As H is missing at most three edges and v is joined to
4 vertices of H, there must be a triangle vvvy in G = E; U H + 4e. Let
H' = H—{v;,v5}. Then H' = K3 If H'is missing exactly 3 edges, one can
find a vertex u € H' such that H' —u 2 C; (pick u to be a vertex of degree
at least two in the complement of H'). Similarly, if H’ is missing exactly 2
edges then there are at least three choices for u so that H' —u 2 Cy (any
vertex incident to a missing edge). For H' = K, H' — u always contains
a C; . Thus in general, if  edges are missing from H’ there are at most x +1
vertices u such that H' —u 2 C; . There are also at most 3 —x missing edges
between H' and {vy,v9} in H, so at most 3 — x values of u such that uv vov
is not a Cf . As (3 — )+ (1 +x) <5, there is a u such that both uvvev is
aCfand H —u 2 Cf so G2 CFUC. O

Suppose a cycle C' has two chords e; = ujv; and ey = usvy. We say that
e; and ey cross if wuq,us, vy, v9 are all distinct and occur in the cyclic order
U1, Uz, V1, V9 on C. Note that incident chords are not considered crossing.

Lemma 5. Forn > 8, C;F° D C}2. Also CF* D CF2, Cf* o CF?, and
cr oy

Proof. We prove the first statement, i.e., that C;/> > C/F? for some m < n.
The remaining low order cases can be checked by a case-by-case analysis
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(see [9]). Suppose we are given C' = C,, with five chords. If e is one chord
and two other chords fail to cross e, then we obtain a smaller C}2 by simply
shortening the cycle using one of the chords. Let e; and e5 be two chords, cho-
sen to be non-crossing if possible. Then the remaining three chords es, ey, e5
all cross both e; and ey. Suppose ez and e4 cross. Then using e3, e4 and two
arcs of C' we obtain a cycle with two chords e, e;. This gives us our C;2
unless this cycle is hamiltonian, i.e., unless e and e, are adjacent at both
ends. A similar argument applies to ey, e5 and e3, e5. But we know at least
two of these three pairs are crossing, otherwise one of es, ey, e5 would fail to
cross two others. But if say e, e4 and ey, e5 are crossing and adjacent at both
ends with e3 # e5, then es, e5 are crossing and not adjacent at both ends.
Hence we always obtain a smaller C2. [

Lemma 6. Each of the following graphs G satisfy G 2 Cf U C} .

C3UKs+6e C3UK; +7e C3UK;?+8e
EsUKs+13¢ E3UK; +13e E3UK7% 4 10e

Proof. If there are |H| + 1 edges between a Cs and H € {Kj5, K, K;*} then
there is a vertex v € H joined to two vertices of Cs forming a C;". But H —v
always contains a C .

Now suppose there are 13 edges between an E5 and a K5 (so only 2 of the
possible edges are missing). One of the vertices v € F3 must send 5 edges
to the K5. Then G[(E3 —v) U K5) = K;° and v sends more than 4 edges to
this graph, so we are done by Lemma 4.

Suppose there are 13 edges between an E3 and a K. One of the vertices
v € E3 must send at least 4 edges to the K; forming a K- * by Lemma 4.
We then have at least 13 — 6 = 7 edges between the two remaining vertices
of B3 and this K;*. One of these vertices must send at least 4 edges to the
K33 forming two C)s by Lemma 4.

Finally, suppose there are 10 edges between Es and K-> Then one of the
vertices of F3 sends at least 4 edges to the K forming two C}s by Lemma 4.
O

Lemma 7. C, UC, +4e D C 2.

Proof. Assume the edges join v; € C to v, € C', i = 1,2,3,4, with the v;
and v} not necessarily distinct. If vy = vo = v3 = vy then the v} are distinct
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and there is an arc, say P = v} ...v, of C' meeting v}, vj. Then vy Pv; is
a cycle with chords vsvj, vgvy. Similarly we are done if all v} are equal. If
U1 # vy = v3 = vy then vj, v}, v} are distinct, so v} is distinct from at least
two other v]. Of course v; is also distinct from at least two other v; as well.
If no three of the v; or v} are equal then it is automatically the case that v,
and v are distinct from at least two of the other v; or v} respectively. Hence
we may assume this. Then at least two v;, ¢ > 1, are such that there is an arc
of C from v; to v; # v; meeting all v; (possibly as an end-vertex). Similarly
for C’. Thus there is an ¢ > 1 such that this holds for both v; and v; with
arcs P and P’ respectively. The cycle vy Pv;v;P'viv, has two chords vy,
ke{2,3,4}\ {i}. O

Lemma 8. P, UC, + 5¢ D C2.

Proof. Fix an orientation of P and denote the edges between P = P, and
C =C0C, as e = ww;, @ = 1,...,5, where u; € P are ordered by their
location along P. (If two edges are incident to the same vertex on P we
order them arbitrarily.) Suppose first that v; # vs. Then one of the arcs in
C from vy to vs in C' must meet two of the three remaining v;. Then the
cycle uivy ... vsus ... uy contains at least two chords. Thus we may assume
v; = v5. Repeating this argument with vy in place of vs we are also done
unless vy = vy or the cyclic ordering of the vertices on C' is vy = vs, vo, V4, U3
with vy, v, v3, v4 distinct. Similarly, using v, in place of v; we are done unless
v = v5 or the cyclic ordering of the vertices on C' is v; = vs, vy, V2, v3 and
vy, Ug, U3, vy are distinct. Since these cyclic orderings are incompatible, we
may assume either vy, = v or vy = v5, say vy = v1. But then vy, vy, v3, v4 are
not distinct, so v, = v5 also, and so v; = vy = vy = v5. But then the cycle
with edges e; and e5 contains chords ey and ey. O

Lemma 9. P, U P, + k,e 2 C! and P, U P, + k'.e D CI where k, and K,
are given by the following table.

n|l2345 >6
kn|4 5 6 6 7 8
k|5 6 6 7 7 8

In particular P, U P, + (n+4)e D CI.

Proof. We first show that P, U P, + 8¢ D C2. Let the 8 edges between the
paths be e; = u;v; with u; on the first path P and v; on the second path P’.
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V3 U5U8V1 V2 Vg UTV4 V3 V5V8V1 V2 U7 VG v

(f) ()

Figure 3: Finding a Cj2 in P, UP, + 8¢ in Lemma 9

Let e; and e; be the edges whose end-vertices u; and uy are furthest apart
on P. The end-vertices v; and vy in general cut the other path P’ into three
pieces A', B’, and C’, where B’ is the path from v; to v, inclusive. If there
is no C? subgraph, then there can be at most one edge from B’ to P, and
by Lemma 8 there can be at most 4 edges from either A" or C’ to P (see
Figure 3(a)). As there are 8 edges in total, there must be at least one edge to
both A" and C’". Working off P’ we also have edges e3 and e; where vz € A’
and vy € C' are furthest apart on P’. Ordering the vertices in each path
left to right we may now assume v3 < v1,v9 < vg and u; < ugz, ug < us. We
may also assume without loss of generality that uy, us and vs, v4 are the end-
vertices of P and P’ respectively. If uy < us and v; < vy then we obtain a
cycle through all vertices except those between uz and u4 and those between
vy and vy (see Figure 3(b)). However each of these intervals meets at most
one edge e;, 1 > 4, so this cycle has at least 8 — 4 — 2 = 2 chords. Thus,
by reversing one path if necessary and relabeling the edges, we may assume
that us < uy and v; < vy. As with P’, decompose P into three paths A, B,
C, where B consists of the vertices from us to uy inclusive.
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By considering the cycles ABC'B’ and BC B’ A’ we see that there is at most
one edge from AB to B'C’ and at most one edge from BC to A’B’. Thus
there are two edges in total that either go between A and A’ or go between C'
and C’. However by considering the cycles AusA'v; and CusC’vy we see that
both edges cannot go between the same pair, so there is an edge e5 from A to
A’ and an edge eg from C' to C’. On P we have u; < us < uz < uy < ug < Uy
and on P’ we have vz < vy < v1 < vy < vg < vy (see Figure 3(c)).

There are two remaining edges, e; from AB to B’C" and eg from BC to A'B’.
Suppose that either u; € B or vg € B’ or u; and vg lie on the same side of es.
Then there is a path from B to B’ through A U A’ meeting both u; and wvg
(see Figure 3(d)). If a similar situation holds for ug and v; on the other side
of the graph then we can combine these paths to obtain a cycle through B
and B’ with e; and eg as chords. Thus without loss of generality we may
assume that u; < uy < us and vs < vg < vy.

We may assume v; > vy and ug > ug as otherwise there would be a cycle
through e; and es with two chords. If v; > vg and ug < ug then there is a
cycle with chords es and eg as shown in Figure 3(e). If v; > vg and ug > ug
then there is a cycle with chords e; and eg as shown in Figure 3(f). Finally,
if v7 < vg then there is a cycle with chords e5 and e; as shown in Figure 3(g).

If the C1? obtained uses all the vertices of both paths, then it forms a cycle
with (|P| — 1)+ (|P'| — 1) +8 — (|P| + | P'|) = 6 chords. Thus by Lemma 5
there is a smaller CT as a subgraph. Hence P, U P, + 8¢ D C'.

To prove the results of the form P, U P,, +ke D CT for n < 8 and all m, it is
enough to consider m < 2k—1 with the edges between P,, and P, meeting the
first and last vertices of P, and at least one of any pair of adjacent vertices on
P, =vi...v,. This is because any counterexample with the k£ added edges
missing vertices v; and v;y1, or missing v; or v,,, can be converted by the
removal of a vertex of P, into a counterexample with the path P,, replaced
with P,,_;. Hence the remaining cases reduce to a finite case analysis. These
cases were checked by computer yielding the stated results (see [9]). [

Lemma 10. Forn >5 and m <n, C, UC,, + (2n+1)e D C, UCI. Also
C,UCy+11le D C3uCy), CLUC,+9 D C,UC,, C,UC3+9e D CsUCs.

Proof. Drop the condition that m < n and assume we have 2max(n,m) + 1
edges between C, and C,, and max(n,m) > 5. For max(n,m) < 8, the
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Table 2: Minimum & such that C, U C,, 4+ ke D C, U C1.

n\m|{3 4 5 6 7

4 - 11

> 10 10 11

6 11 13 11 11

7 10 11 11 12 13

AISO, C4UC4+9€DC*UC*, C4U03+9€DC3U03.

minimum number of edges needed to give a C, and a CI with fewer total
vertices was found by exhaustive computer search (see [9]). The results are
given in Table 2. Hence from now on we shall assume max(n, m) > 8.

Let v be a vertex meeting the maximal number of edges between the two
cycles and assume without loss of generality that v € C,, with v adjacent to
d vertices in C,,. As the total number of edges between the cycles is more
than 2n, we have 3 < d < m.

Case 1: d > 6.

Divide (), into three vertex disjoint arcs P;, P», and Pj, so that each P;
contains at least two neighbors of v. If there are at least 3 edges from P; to
P = C,, — v then one obtains a C, on P; U P not using all these vertices.
(Two edges between two paths are enough to form a cycle, and if this cycle
is hamiltonian then a third edge forms a chord, and hence one can find a
shorter cycle.) However, there are at least 4 edges from v to C,,, — P; forming
a CF? disjoint from this P, U P. Hence we may assume each P; sends at
most 2 edges to C,, — v. The total number of edges between the cycles is
then at most 3 X 2+ d < m + 6, which is less than 2max(n,m) + 1 when
max(n,m) > 8, a contradiction.

Case 2: d =5.

Divide ), into five vertex disjoint arcs P, ..., Ps, so that each P; contains
one neighbor of v. Since there are 4 edges to each C,,, — P;, we can as in Case 1
assume there are at most 2 edges from each P; to C,, —v. This gives at most
5 x 24 d = 15 edges between the cycles, which is less than 2 max(n,m) + 1
when max(n, m) > 8.

Case 3: d = 4.
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Divide ), into two vertex disjoint paths P, P, each containing two neigh-
bors of v. Each P; forms a cycle with v. If there are |P;| 4+ 4 edges from P,
to P = C, — v, j # i, then by Lemma 9 we obtain a C] on these vertices
which does not use all the vertices of P; U P and is disjoint from a cycle
in P, U {v}. Thus we may assume there are at most |P;| + 3 edges from
each P; to P. The total number of edges between the cycles is then at most
S22 (|P| 4 3) +d=m+10. If m > 6 then we can in fact choose the paths
P; so that the end-vertices of each P; are not both neighbors of v and so the
cycle in P; U {v} does not use all the vertices of P;. Then by Lemma 9 we
can assume there are at most | P;| +2 edges from each P; to P and we obtain
a bound of 32 (|P;| +2) + d = m + 8 on the number of edges between the
cycles. Thus in general there are at most max(m + 8, 16) edges between the
cycles which is less than 2max(n, m) + 1 when max(n, m) > 8.

Case 4: d = 3.

Let vy, vs,v3 be the neighbors of v on C,,, and let P; be the arc strictly
between v; and v;;1 (where vy = v1). Let p; be the number of edges from P,
to P = C, —v and n; the number of edges from v; to P. We can form a cycle
vuy Prvgv, so if there are more than 7 edges from Pov3P; to P then we are
done by Lemma 9. Hence we may assume ps + p3+ns < 7. Adding the three
cyclic rearrangements of this inequality gives 2 p;+ > n; < 21. But as the
maximum number of edges meeting a vertex is d = 3, we have n; < 2. (We are
not counting the edge from v; to v in n;.) Hence 2> p;+2> n; < 2146 = 27,
so > pi+>_n; < 13. Hence there are at most 13+d = 16 edges between the
cycles, which is less than 2max(n, m) + 1 when max(n, m) > 8. The lemma
now follows. m

Lemma 11. Forn >6 and 4 <m <n, C,UC,, + (3n+1)e D CIUC].

Proof. Drop the condition that m < n and assume we have 3max(n,m) +
1 edges between C, and C,, and max(n,m) > 6. For the cases when
max(n,m) < 7 the minimum number of edges needed to give two vertex
disjoint C graphs with fewer total number of vertices was found by exhaus-
tive computer search (see [9]). The results are given in Table 3. Hence from
now on we shall assume max(n,m) > 8.

Let v, v' be a pair of vertices that are adjacent on one of the cycles and
which between them meet the maximum number of edges to the other cycle.
Assume without loss of generality that v,v" € C, with dy edges between
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Table 3: Minimum & such that C, U C,, + ke D CT U C1.

n\m|4 5 6 7
5 |14 16

6 |16 15 19
7|15 17 17 18

{v,v'} and C,,. As the total number of edges between the cycles is more
than 3n, we have dy > 7. A vertex u € C,, will be said to have multiplicity
k, k € {0,1,2}, if it is joined to k of the elements of {v,v'}. Let n; be
the number of multiplicity k vertices of C,, so that m = ng + n; + ny and
dy = ny + 2ny. Let P be an arc of C,, meeting some neighbors of {v,v'}. If
the multiplicities of the neighbors along P contains one of the patterns

21, 2.2, 2.1.1, 2.1.2,  1.1.1.1.1, (1)

(or their reflections) where .. denotes zero or more 0Os, then there is a CI in
the graph using the vertices of {v,v'} U P. (The last two cases follow from
Lemma 9 with n = 2, the others are easy exercises.)

Case 1: dy > 10.

Then either v or v’ sends at least 6 edges to C,,, say v sends d > 6 such edges.
Divide C,, into two (if d > 8) or three (if d € {6,7}) vertex disjoint arcs P; so
that each P; meets at most d — 4 neighbors of v. If there are at least |P;| + 4
edges from P; to P = C,, — v then by Lemma 9 one obtains a Cf on P, U P
not using all these vertices. However, there are at least 4 edges from v to
C,, — P; forming a C disjoint from this C]. Hence we may assume each P,
sends at most |P;| + 3 edges to C,, —v. For d > 8 the total number of edges
between the cycles is then at most Y2 (|P;|+3) +d=m+6+d < 2m+6
and for d < 8 the total number of edges between the cycles is at most
SO (P +3)+d=m+9+d < m+16. In both cases this is less that
3max(n,m) + 1 as max(n,m) > 8, contradicting the assumption that there
are 3max(n, m) + 1 edges between the cycles.

Case 2: dy = 10.

Assume first that one can divide (), into two vertex disjoint arcs P; and P,
so that each P; meets at most dy — 5 = 5 edges from {v,v'}. If there are at
least | P;| +4 edges from P, to P = C,, — {v,v'} then by Lemma 9 one obtains
a C! on P, U P not using all these vertices and a C] on the disjoint subset
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of vertices of the paths vv' and C,, — P;. Thus the total number of edges
between the cycles is at most 3.7 (| Pi| +3) +dy = m+ 16, which is less that
3max(n,m)+ 1 as max(n,m) > 8. If it is not possible to find two such arcs,
then the multiplicity pattern of points on (), is 2..2..2..2..2... In this case we
can still decompose C,, into two arcs P;, each of whose complements includes
the pattern 2..2 of (1). Thus we have a C] on the vertices of C,, — P; and
{v,v'}, and so the above argument still applies with this pair (P, P).

Case 3: dy = 9.

Assume first that ny > 0 and the multiplicity pattern of vertices along C,, is
not 2..1..2..1..2..1.. with at least one multiplicity 0 vertex between consecutive
neighbors of {v,v'}. Then we can find an arc P, of C,, with multiplicity
pattern 21, 2..1..1, or 2..2 so that P, = (), — P; sends at least 5 edges to
{v,v'}. Thus, for i = 1,2, there exists a C] on the vertices of C,, — P, and
{v,v"}. Asin Case 2, we can now assume there are at most | P;|+3 edges from
P, to P = C,, — {v,v'} and so there are at most -, (|P;| +3) +dy = m+15
edges in total between the cycles. This gives a contradiction as m + 15 <
3max(n,m) + 1 when max(n,m) > 8. Assume now that we are in one of
the remaining cases where either we have the pattern 2..1..2..1..2..1.. with
at least one multiplicity 0 vertex between consecutive neighbors of {v,v'},
or ng = 0. In both cases there are at least 9 vertices in C,, and we can
decompose C,, into three vertex disjoint arcs P; each sending 3 edges to
{v,v'}. Then C,, — P, sends 6 edges to {v,v'} and as above we can assume
there are at most Y7, (|P;|+3) +dy = m+ 18 edges between the cycles. This
gives a contradiction as m+ 18 < 3max(n, m)+ 1 when max(n,m) > m > 9.

Case 4: dy = 8.
If the multiplicity pattern on C,, is one of the following,
2.2.2.2.., 2.2.2.1..1.., 2.2.1..1..1..1.., 2.1.1.2.1..1.,

or if we have adjacent vertices with multiplicities 1 and 2, then we can decom-
pose C,, into two arcs Py, P», each containing one of the multiplicity patterns
in (1). Thus each C,, — P; forms a C with {v,v'}. As above we get a bound
of 32 (|P;| +3) + dy = m + 14 on the number of edges between the cycles.
This gives a contradiction as m+ 14 < 3max(n, m)+ 1 when max(n, m) > 8.
The remaining cases when ny > 0 are (up to cyclic rearrangements)

2.2.1.2.1.., 2.1.2.1.1.1.., 2.1.1.1.1.1..1..,

with multiplicity 0 vertices between the 1s and 2s. In each of these cases
there are at least 9 vertices on C,, so m > 9. Also, in each case (and when
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ny = 0) we can decompose C,, into three arcs P; each meeting at most 3
edges to {v,v'}. Then C,, — P; sends at least 5 edges to {v,v'}, so as above
we can assume there are at most >, (| Pj| +3) 4 dy = m + 17 edges between
the cycles. This is less than 3 max(n, m)+1 if max(n, m) > 9, so we obtain a
contradiction unless n < m = 8 and ny, = 0. In this last case we may assume
that each P; contains either 2 or 3 vertices of (), as there are no multiplicity
0 vertices on C,,. By Lemma 9 we can in fact assume each P; sends at most
5 edges to C,, — {v,v'} so our bound on the number of edges between the
cycles is 3 X 5 + dy = 23 which is less than 3 max(n,m) + 1 = 25.

Case 5: dy = 7.
If ny > 0 then the multiplicity pattern on C,, is one of the following (up to
cyclic rearrangements).

2.2.2..1.., 2.2.1..1.1.., 2.1.2..1.1.., 2.1.1..1..1..1..

In each case we can decompose C, into three arcs P; such that C,, — P;
always contains one of the patterns of (1). As above the total number of
edges between the cycles is at most > (| P;| 4+ 3) 4+ da = m + 16 which is less
than 3 max(n, m) + 1 when max(n, m) > 8. Hence we may assume ny = 0.

Let vy,...,v7 be the neighbors of {v,v'} on C,, arranged in a cyclic order,
and let P; be the arc of C,, from v; through v;,1 to just before v; o (indices
taken mod 7). Thus P, ..., P; form a double cover of C,,. Each C,, — P,
sends 5 edges to {v,v'} so as above we may assume each P; sends at most
| P;| + 3 edges to C,, — {v,v'}. Thus the total number of edges between the
cycles is at most 137 (|P] +3) +dy = m + 173, If max(n,m) > 9 we
are done as this is less than 3max(n,m) + 1. Hence we may now assume
max(n,m) = 8. In this case there is at most one multiplicity 0 vertex on C,,
so all P; have either 2 or 3 vertices. Then by Lemma 9 we may assume that
there are at most 5 edges from P; to C,, — {v,v’} and we obtain a bound of
%23:1 54 dy = 24% on the total number of edges between the cycles. This
is a contradiction as 3 max(n,m) + 1 = 25 in this case.

The lemma now follows as dy > 7. O

Theorem 12. Suppose G is a graph with minimum degree 6(G) > 2. Suppose
further that if there is more than one vertex of degree 2 in G then the degree
2 wvertices of G induce a path in G. Then G contains a cycle with at least
two non-incident chords.
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We never use the fact that the chords found in Theorem 12 are non-incident,
however we include this in the statement as it is a natural consequence of
the proof.

Proof. By considering any single component of GG, we may assume without
loss of generality that G is connected. Let Py be the subgraph of G induced
by the degree 2 vertices, so that F, is either a path, a single vertex, or empty.
Suppose G is not 2-connected and let By, ..., B, be the blocks in the block
cut-vertex decomposition of G. Further, suppose that if By # () then it
meets B;. Take any leaf-block B; # B;. Then B; is not a single edge (as
G has no degree 1 vertices), and can meet Fy in at most one vertex (the
cutvertex joining B; to the rest of the graph). Hence B; is 2-connected and
all vertices in B; have degree at least 3 except for the cut vertex joining B;
to the rest of GG, which has degree at least 2 in B;. By replacing G with B;
we may therefore assume G is 2-connected.

Since G is non-trivial and 2-connected, it contains a cycle. Pick a longest
cycle C'in G. The graph G \ C is a union of components 5i,...,S,. For
each chord uv of C we also include a fictitious empty component S; that
we declare to be joined to u and v only. In this way, each vertex v € C,
v ¢ Py, must be joined to at least one S; as d(v) > 3. If two neighboring
vertices u, v on C' are joined to the same S; then we can construct a longer
cycle by replacing the edge uv of C' by a path through S; (which in this case
is necessarily non-empty). However, each S; must be joined to at least two
vertices of C' as (G is 2-connected. We shall construct a new cycle with two
non-incident chords using paths P; joining vertices of C' through the S;, and
edges of C'. The chords will themselves be original edges of C.

For the rest of the proof we shall drop the assumption on the internal struc-
ture of the S;, and use only the fact that two vertices on C' joined to the
same S; can be joined by a path through S;. Also, all vertices on C are
joined to some S;, except possibly those on a proper arc Py of C', and each
S; is joined to at least two vertices of C, no pair of which are adjacent on C.
This slight generalization will be used in the proof of Theorem 13 below.
Fix an orientation of C' and for uw,v € C write [u,v] for the arc from u to
v clockwise around C' including the endpoints u and v. We shall also write
(u,v], [u,v), or (u,v) for arcs that do not include endpoints u, v, or both u
and v respectively. For x € C' we shall abuse notation slightly by writing
S, for some S; that is joined to x, even though the choice of S; may not be
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Figure 4: Proof of Theorem 12.

unique.

Pick two vertices a and o’ that are joined to a common S, and with minimal
distance between a and @’ in the path C' — Fy. The assumptions above
guarantee such a pair exists and that they are not adjacent on C'. Let [a, d'] =
ab...ca' be the arc from a to o’ in C' — F,. Assume first that b # ¢. By
minimality of [a, a'], we may assume b and ¢ are joined to distinct sets S, and
S., neither of which is S, as S, is not joined to neighboring vertices on C.
Let b’ # b and ¢ # ¢ be vertices of C' joined to S, and S. respectively, and
for x € {a,b, c} let P, be a path through S, joining z to its corresponding x'.
By minimality of [a,d’], ¥ and ¢’ do not lie in the arc [a,d’]. If ¥/ # ¢’ then
there is a cycle with chords ab and ca’ (see Figure 4(a) and (b)). If &/ = ¢
and this vertex is adjacent to a or o/, say d/, then by Figure 4(d) we obtain
a cycle with two chords ab and a’b’. Thus we may assume b = ¢ and this
vertex is not a neighbor of a or @’ on C. Also, we can assume that neither
Sp nor S, is joined to any vertex not in {b,c,b'}, so in particular they are
not joined to any vertex in [a’,V). If b = ¢ then we have the situation in
Figure 4(e), where once again we may assume any other vertex b’ = ¢ joined
to Sy is not a neighbor of a or a’ and, by suitable choice of i’ = ¢/, we can
again assume S, = S, is not joined to any vertex in [da/,b"). In the following
we shall consider the case when b # ¢ and will only mention the b = ¢ case
when there are differences in the proof.

As [a, d'] is disjoint from Py, we may assume without loss of generality that Py
(if non-empty) lies in (b, a) and hence that the vertex d € [a/, V') adjacent to
a’ is not of degree 2 and thus is joined to some S;. Now Sy # S, as otherwise
S, would be joined to neighboring vertices a’,d on C, and Sy # Sy, S. as
both S, and S, are not joined to any vertex in [a’,V’), which includes the
vertex d. Let d’ # d be a vertex on C joined to S;. Then d' does not lie in
the arc (b,a’] by minimality of [a,a’]. Also d’ # b as otherwise we could use
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Figure 5: Proof of Theorem 12.

{b,d} in place of {b,V'} to obtain Figure 4(d). If &’ € (¥, a] then we have a
cycle with chords ab and a'd (Figure 5(a)). Hence we may assume d’ € [d, V'].
Now choose e, e’ € [d, V] joined to the some S, ¢ {S,, Sy, S.} with minimal
arc-length [e, ¢/]. As d,d" have the required properties that d,d € [d, V'] and
Sa & {Sa, Sk, S}, such a pair e, ¢ must exist. From now on we shall ignore
{d,d'} and work instead with {e, €'}, although these may be the same pair.
Let [e,e'] = ef ... g€, possibly with f = g. Note [e, €] is disjoint from P, so
f and g are joined to some Sy and S, respectively. We have Sy, S, & {S, S.}
as Sp and S. are not joined to any vertex in [da’,b"), which includes both f
and g. Also S, S, # S. as otherwise S, would be joined to adjacent vertices
of C. Now both f and g are joined via Sy and S, to vertices f’ and ¢
respectively outside of [e, €] for otherwise f' € [e,e] or ¢’ € [e, €] would
contradict the minimality of [e,€¢’]. (If Sy = S,, say, then this is automatic
as we can take f' = a.) If precisely one of Sy and S, are equal to S,, say
Sg = S,, then we can take f’ = a or f' = &' so that f' # ¢. Thus we
are in the case of Figure 4(a) or (b) with ({e,e'}, {f, f'},{g,9’}) in place of
({a,d'}, {b,V'},{c,c}). If Sy = S5, = 5, and €' # V' then we are in the case of
Figure 4(a) with ({a, f},{b,V'}, {e,e'}) in place of ({a,a’},{b,0'}, {c,'}). If
Sp=.8,=2.5, and ¢ =V then we are in the case of Figure 4(d) with {a, g}
taking the place of {a,a’}. Hence we may assume Sy, S, ¢ {S,, b, S¢, Se }

If f# g then Sy # S, (by minimality of [e, €]) and so arguing as above

with {e, e’} in place of {a,d’} we can assume f' = ¢'. If f = g then we also
choose f" = ¢'. If f’ € [d/,e) then we have a cycle with chords ca’ and €'g
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(Figure 5(c)). If f* € (¢/,b/] then we have a cycle with chords ca’ and ef
(Figure 5(d), note a’ # e so chords do not intersect). If f' € (b',a] then
we have a cycle with chords ab and €'g (Figure 5(e)). If f’ € (a,d’) and
e’ # b then we have a cycle with chords ab and ef (Figure 5(f)). Finally,
if f/ € (a,d’) and ¢ = V' then we have a cycle with chords ab and €'g
(Figure 5(g)). O

Theorem 13. Suppose G contains a cycle C' and every vertex in S = G —C
has degree at least 3 in G and S # (). Then either G contains a cycle shorter
than C, or G contains a cycle with two chords.

Proof. By restricting to a single component of G[S] we may assume G[S] is
connected. If S consists of a single vertex then it sends at least three edges
to C, so we are done by Lemma 3. Hence we may assume .S contains at least
two vertices. Consider the block cut-vertex decomposition of G[S]. Suppose
there is a leaf-block B, possibly joined to the rest of G[S] via a cut-vertex v;
and suppose that there are no edges from B—wv; to C'in G. Then every vertex
in B except possibly v; is of degree at least 3 in G[B], so by Theorem 12 we
have a C'? in G[B]. Hence we may assume that there is an edge from B — v,
to C.

Each leaf block is either a single edge or is 2-connected. Suppose first that
there exists a 2-connected leaf-block B. If B # S let v; be the cut-vertex
joining B to the rest of S in G[S]. Since every other leaf-block is joined to
C, we may assume there is a path P from v; to C' that does not meet B —vy.
If B =S then we can set v; to be any vertex of B joined to C' and P to be
the single edge path joining v; to C'. Then in the graph G[B U P U (], each
vertex of B has degree at least 3.

Pick a maximal cycle C" in G[B]. Then as in the proof of Theorem 12, we can
decompose G|B]—C" into components S;. If (P—uv;)UC is adjacent to vertices
in C” we shall consider this an extra component, which will be denoted S;.
Chords of C" will be associated to fictitious empty components S;. Now each
vertex of C” is joined to some S;, and each S; # S is joined to at least two
vertices of C’. Moreover, each S; # S; cannot be joined to adjacent vertices
on C' by maximality of C’. The component S; however may be joined to any
number of vertices of C’ and even to adjacent vertices of C’ as the cycle C’
was chosen to be maximal in G[B] rather than in G[BUPUC]. By removing
any edges to S from each v € C’ that is joined to some S; # Si, we may
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assume that any vertex v € C” that is joined to S is joined to no other S;.
If Sy is now joined only to the vertices of C” forming an proper arc of C’,
then we denote this arc as Fy, remove all connections to S; and proceed with
the proof as in Theorem 12. (This includes the case when S; is joined to
zero or one vertex of C’, but not the case when Sy is joined to all vertices of
C', which will be dealt with below.) If the set of vertices joined to S; forms
just one arc plus some other isolated vertices on C’, then we let Py contain
all but one end-vertex of the arc. Remove connections from Fy to S;. Then
Sp is now joined to at least two vertices of C’, but is not joined to any pair
of adjacent vertices on C’. In this case we can proceed as in Theorem 12.
Now suppose there are two non-trivial arcs of vertices joined to S;. Then
in particular there are at least 4 vertices of C’ joined to S;. Thus we may
assume that C' and C” are joined by 3 edges and a path P (which may itself
be a single edge), and these meet two pairs of adjacent vertices on C’. The
only other case is when S; is joined to all vertices of C”. In both these cases,
let vy Puy, vous,. .., vpug, k € {3,4} be paths and edges from C’ to C' with
vy adjacent to ve, and vy either adjacent to vy (if &k = 4) or adjacent to both
vy and vy (if £ = 3). The last case is needed only if C’ is a triangle and S}
is joined to all vertices of C’. If u; # uy then one of the arcs from u; to us
on C' contains ug and we obtain a cycle vy ...vs3...vus...u3...u; Pv; with
chords vyvy and vsus. Thus we may assume u; = up. Similarly if k£ = 4 we
may assume u3 = uy (as otherwise we would obtain a cycle with chords vzv,
and vous). If k = 3 we may assume (by interchanging vy, us and vs, uz) that
Uy = ug = ug. If u; = us = uz = u then we have a cycle v1 Pujvy...v3...0;
with chords v1v9 and ugvs (see Figure 6(a)). If uy = ug # ug = uy then we
have a cycle uy Py ... v4u4v3 . . . vouy with chords v1vy and vgvy (Figure 6(b)).

Now suppose there are no 2-connected leaf blocks of G[S]. Then either G|[5]
is a single edge, or its block cut-vertex decomposition contains at least two
leaf blocks which are single edges. In either case there is a path P joining two
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vertices v; and vy of degree 1 in G[S]. Since v; and vy have degree at least
3 in G, each must be joined to two vertices of C. Denote the neighbors of
{v1,v2} in C as uy, . .., ug, where 2 < k < 4 and the u; are arranged cyclically
around C. There must be some consecutive pair, say uy, us such that wu; is
joined to vy and wus is joined to ve. Then vy Pugus ... us...up...uqvy is a
cycle with two chords vyu; and vou; for some 7,5 € {1,...,k}. a
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