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Some Ultimate and Long-Term Objectives

1 Create and demonstrate a provably globally convergent nonlinear (FAS)
multigrid algorithm for the (Steady) Cahn-Hilliard.

2 The algorithm should have optimal or near optimal complexity, i.e., it
should be fast.

3 The algorithm should work and work efficiently for a broad range of
nonlinearities in the equation and certain types of degenerate or nearly
degenerate mobilities.

We don’t get everything, but we get a lot...
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Recall the Cahn-Hilliard Equation

The Cahn-Hilliard equation in mixed formulation (Cahn, 1961):

∂tφ = ε∆µ in Ω,

µ = ε−1φ3 − ε−1φ− ε∆φ in Ω,

∂nφ = ∂nµ = 0 on ∂Ω,

with φ(0) = φ0, where ε > 0 is the interfacial parameter.

Mixed weak formulation: find φ ∈ L∞
(
0,T ;H1(Ω)

)
∩ C

(
[0,T ], L2(Ω)

)
,

∂tφ ∈ L2
(
0,T ;H−1(Ω)

)
and µ ∈ L2

(
0,T ;H1(Ω)

)
such that

〈∂tφ, χ〉+ ε (∇µ,∇χ) = 0 ∀χ ∈ H1(Ω),

ε−1
(
φ3 − φ, ϕ

)
+ ε (∇φ,∇ϕ)− (µ, ϕ) = 0 ∀ϕ ∈ H1(Ω),

for almost all t ∈ (0,T ), with φ(0) = φ0. Note that BCs are natural.
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Conserved Gradient Flow

Consider the typical Cahn-Hilliard free energy (Cahn and Hilliard, 1957)

E (φ) =

∫
Ω

{
1

4ε
φ4− 1

2ε
φ2 +

ε

2
|∇φ|2

}
dx.

The chemical potential is

µ = δφE = ε−1φ3− ε−1φ − ε∆φ.

Weak solutions dissipate the energy at the rate

E
(
φ(s)

)
+

∫ s

0

‖∇µ‖2
L2 dt = E

(
φ(0)

)
,
(
dtE(φ) = −‖∇µ‖2

L2

)
.

Mass conservation:∫
Ω

(φ(x, t)− φ(x, 0)) dx = 0, a.e. t > 0,

(
dt

∫
Ω

φ(x, t) dx = 0

)
.
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Time Discretization

Let 0 = t0 ≤ t1 ≤ · · · tM = T , be a uniform partition of [0,T ], with
τ = tm − tm−1.

Given φm−1 ∈ H1(Ω), find φm, µm ∈ H1(Ω) such that

(δτφ
m, χ) + ε (∇µm,∇χ) = 0 ∀χ ∈ H1(Ω),

1

ε

(
(φm)3−φm?

, ψ
)

+ ε (∇φm,∇ψ)− (µm, ψ) = 0 ∀ψ ∈ H1(Ω),

where

δτφ
m =

φm − φm−1

τ
,

and

m? =


m for Backward Euler

or
m − 1 for Convex Splitting

.
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Mixed, Fully Discrete Scheme

For any 1 ≤ m ≤ M, given φm−1
h ∈ Sh find φm

h , µ
m
h ∈ Sh such that

(δτφ
m
h , χ) + (∇µm

h ,∇χ) = 0, ∀χ ∈ Sh,

ε−1
(

(φm
h )3−φm?

h , ψ
)

+ ε (∇φm
h ,∇ψ)− (µm

h , ψ) = 0, ∀ψ ∈ Sh,

where
Sh :=

{
v ∈ C 0 (Ω) ∣∣∣ v |K ∈ P1(K), K ∈ Th

}
⊂ H1(Ω),

and
φ0
h := Rhφ0.

Rh : H1(Ω)→ Sh is the elliptic (Ritz) projection.

It is easy to see that the scheme is discretely mass conservative:(
φm
h − φ̄0, 1

)
= 0, ∀ m ≥ 1.
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A Stationary Nonlinear Problem

u −∆w = f , in Ω,

|u|p−2u −∆u − w = g , in Ω,

∂nu = ∂nw = 0, on ∂Ω,

where 2 ≤ p <∞, f ∈ H1(Ω) ∩ Lp(Ω), and g ∈ Lr (Ω) with 1
p

+ 1
r

= 1. A

mixed weak formulation is written as follows: find u ∈ H1(Ω) ∩ Lp(Ω) and
w ∈ H1(Ω) such that

(u, χ) +
(
∇w ,∇χ

)
= (f , χ) ∀χ ∈ H1(Ω),(

|u|p−2u, ψ
)

+ (∇u,∇ψ)− (w , ψ) = (g , ψ) ∀ψ ∈ H1(Ω) ∩ Lp(Ω).

Mass is conserved in the sense that (u − f , 1) = 0.
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An Equivalent Convex Optimization Problem

Equivalently, find v ∈ H̊1(Ω) ∩ Lp(Ω) satisfying E(v) = inf ṽ∈A E(ṽ) given the
energy and the admissible set

E(v) :=
1

2

∥∥v − f + f
∥∥2

−1
+

1

2
‖∇v‖2

L2 +
1

p

∥∥v + f̄
∥∥p
Lp
− (g , v) ,

A := H̊1(Ω) ∩ Lp(Ω).

It is straightforward to show E has a unique global minimizer, and the
associated Euler-Lagrange equation is(
|v + f̄ |p−2(v + f̄ ), ψ

)
+ (∇v ,∇ψ) +

(
T(v − f + f̄ ), ψ

)
= (g , ψ) , ∀ψ ∈ A.

T = A−1 = (−∆)−1. The chemical potential equation can be recovered via
−w? = T(v − f + f̄ ) to get

(v , χ) + (∇w?,∇χ) = (f , χ), ∀χ ∈ H̊1(Ω).
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A Drop in a Shear Flow
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Isothermal Buoyancy with Mixing
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Convection Flows
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Lava Lamps
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Tumor Growth
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A Block Copolymer Melt in a Shear Flow
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Two Classes of Nonlinear Stationary PDE

• A Second-Order Problem: Find u : Ω→ R such that

−ε∆u + |u|p−2u = f in Ω,

with u = 0 on ∂Ω and p ≥ 2.

• A Fourth-Order Problem: Find u,w : Ω→ R such that

u −∆w = g in Ω

−ε∆u + |u|p−2u − w = f in Ω,

with ∂nu = ∂nw = 0 on Ω and p ≥ 2.

These problems are the Euler equations of certain convex energies.

Now, let me tell you a little lie: The first and second problems are morally the
same. An algorithm that works for the first will work for the second.

Convergence of FASD S.M. Wise
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A General Convex Optimization Problem

Find u ∈ V, where V is a Hilbert space, such that

u = argmin
w∈V

E(w).

• How does one compute solutions or approximate solutions?

• For a good approximation, one must usually solve

N (u) = f,

N nonlinear equations in N unknowns, where N is very large.

• Can approximate solutions be computed efficiently via iteration?

• Will the convergence rate of our iterative method depend upon N?

• Convergence in O(N) or O(N log(N)) operations?
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Assumptions on the Energy

We assume that the energy functional E( · ) : V → R is Fréchet differentiable
for all points v ∈ V.

Energy Assumptions

(E1) (Strong convexity/ellipticity): There is a constant µ > 0 such that

µ ‖w − v‖2
V ≤ 〈E

′(w)− E ′(v),w − v〉, (3)

for all v ,w ∈ V, where 〈 · , · 〉 is the dual pairing between V ′ and V.

(E2) (Lipschitz continuity of derivatives): For fixed u0 ∈ V, there exists a
constant L such that, for all v ,w ∈ B := {v ∈ V | E(v) ≤ E(u0)},

‖E ′(w)− E ′(v)‖V′ ≤ L‖w − v‖V . (4)

Convergence of FASD S.M. Wise
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Theorem (Existence and Uniqueness of Minimizers)

If E satisfies assumption (E1), then, for all w , v ∈ V

E(w)− E(v) ≥ 〈E ′(v),w − v〉+
µ

2
‖w − v‖2

V . (5)

Consequently, E is strictly convex and coercive. Furthermore, there is a unique
element u ∈ V with the property that

E(u) ≤ E(v), ∀ v ∈ V, and E(u) < E(v), ∀ v 6= u,

and this global minimizer satisfies Euler’s equation

〈E ′(u),w〉 = 0, ∀ w ∈ V. (6)

Remark

It is (4) that we want to solve; this is typically a nonlinear PDE or integral
equation, et cetera.
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Further Properties

Lemma (Upper and Lower Lipschitz)

Suppose E satisfies assumptions (E1) and (E2). For all v ,w ∈ B,

µ ‖w − v‖2
V ≤ 〈E

′(w)− E ′(v),w − v〉 ≤ L ‖w − v‖2
V .

Furthermore the lower bound holds for all v ,w ∈ V.

Proposition (B is Convex)

If E satisfies (E1), the bounded energy set,

B := {v ∈ V | E(v) ≤ E(u0)} ,

is convex.

Convergence of FASD S.M. Wise
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Lemma (Quadratic Energy Trap)

Suppose E satisfies assumptions (E1) and (E2). For all v ,w ∈ B,

µ

2
‖w − v‖2

V + 〈E ′(v),w − v〉 ≤ E(w)−E(v) ≤ 〈E ′(v),w − v〉+
L

2
‖w − v‖2

V .

Furthermore the lower bound holds for all v ,w ∈ V. In addition, suppose u ∈ B
is the minimizer of E , then for all w ∈ B,

µ

2
‖w − u‖2

V ≤ E(w)− E(u) ≤ L

2
‖w − u‖2

V . (Energy Trap)

Again the lower bound holds for all w ∈ V.

Proof.

Use Taylor’s Theorem with integral remainder, using that B is convex for the
upper bound.

Convergence of FASD S.M. Wise
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Lemma (The Reciprocal Upper Bound)

Suppose that E satisfies Assumption (E1) and u ∈ V is the minimizer of E ;
then for all v ∈ V,

0 ≤ E(v)− E(u) ≤ 1

2µ
‖E ′(v)‖2

V′ . (7)

Proof.

This follows by Taylor’s Theorem with integral remainder, and the Riesz
Representation Theorem.

This will be a key estimate in the convergence analysis.

Convergence of FASD S.M. Wise
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Lemma (Quadratic Energy Traps for Energy Sections)

Suppose that E satisfies (E1) – (E2), ξ ∈ B is arbitrary, and W ⊆ V is a
subspace. Define the energy section

J(w) := E(ξ + w), ∀ w ∈ W.

Then J :W → R is differentiable, strongly convex, and there exists a unique
element η ∈ W such that ξ + η ∈ B, η is the unique global minimizer of J, and

〈E ′(ξ + η),w〉 = 〈J ′(η),w〉 = 0, ∀ w ∈ W.

Furthermore, for all w ∈ W with w + ξ ∈ B,

µ

2
‖w − η‖2

V ≤ J(w)− J(η) = E(ξ + w)− E(ξ + η) ≤ L

2
‖w − η‖2

V .

The lower bound holds for any w ∈ W, without restriction.
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Subspace Decompositions
Suppose that

V = V1 + V2 + · · ·+ VN , Vi ⊆ V, i = 1, . . . ,N.

Assumptions on Subspace Decompositions

(SS1) Stability: There is a constant CA > 0, such that, for every v ∈ V, there
exists vi ∈ Vi , i = 1, · · · ,N, with the property that

v =
N∑
i=1

vi , and
N∑
i=1

‖vi‖2
V ≤ C 2

A‖v‖2
V .

(SS2) Strengthened CS: There is a constant CS > 0, such that, for any
wi,j ∈ B, ui ∈ Vi , vi ∈ Vi , with wi,j + ui ∈ B,

N∑
i=1

N∑
j=i+1

〈E ′(wi,j + uj)− E ′(wi,j), vi 〉 ≤ CS

√√√√ N∑
i=1

‖ui‖2
V

√√√√ N∑
i=1

‖vi‖2
V .

(Xu, SIREV 1992) and (Tai and Xu, Math Comp, 2001)
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Successive Subspace Optimization (SSO) Algorithm

Result: uk+1 = SSO(uk)
v0 = uk ;
for i = 1 : N do

Define an energy section along Vi :

Ji (w) := E(vi−1 + w), ∀w ∈ Vi ;

Compute the subspace correction:

ei = argmin
w∈Vi

Ji (w); (8)

Apply the subspace correction:

vi = vi−1 + ei ;

end

uk+1 = vN ;

Tai and Xu, Math. Comp. (2001).
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Fundamental Orthogonality and Gauss-Seidel

Remark

The “correction” ei computed in SSO is uniquely defined since Ji inherits the
convexity of E . We have the orthogonality condition

〈E ′(vi ),w〉 = 〈E ′(vi−1 + ei ),w〉 = 〈J ′(ei ),w〉 = 0, ∀ w ∈ Vi .

The condition
〈E ′(vi ),w〉 = 0, ∀ w ∈ Vi ,

is referred to as the fundamental orthogonality (FO) of the solver.

Remark

SSO method can be considered as a generalization of the nonlinear
Gauss-Seidel methodology.

Remark

Of course, we always decrease the energy in SSO:

E(uk) = E(v0) ≥ E(v1) ≥ · · · ≥ E(vN) = E(uk+1).

Convergence of FASD S.M. Wise
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Theorem (The Golden Key)

Suppose that {dk}∞k=0, {δk}∞k=0, {αk}∞k=0 are sequences of non-negative real
numbers, the first two having the relationship

δk = dk − dk+1, k = 0, 1, 2, · · · .

Assume that there are constants CL,CU > 0, independent of k, such that

CLαk ≤ δk and dk+1 ≤ CUαk .

Then

dk+1 ≤
CU

CL + CU
dk , k = 0, 1, 2, · · · . (9)

Consequently {dk} converges monotonically, and (at least) linearly to 0.

Proof.

dk+1 ≤ CUαk =
CU

CL
CLαk ≤

CU

CL
δk =

CU

CL
(dk − dk+1).

Convergence of FASD S.M. Wise
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Corollary (Golden Key Strategy: Lower and Upper Energy Bounds)

Suppose that there exist positive constants CL and CU such that

E(uk)− E(uk+1) =: δk ≥ CLαk = CL

N∑
i=1

‖ei‖2
V , (10)

E(uk+1)− E(u) =: dk+1 ≤ CUαk = CU

N∑
i=1

‖ei‖2
V . (11)

Then

E(uk+1)− E(u) ≤ ρ
(
E(uk)− E(u)

)
, ρ :=

CU

CL + CU
,

and E(uk) converges monotonically, and (at least) linearly to E(u), at the
linear rate ρ. Furthermore, uk converges at least linearly to u.

Convergence of FASD S.M. Wise
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v

E(v)

u uk+1 uk

E(u)

E(uk+1)

E(uk)

dk+1

dk

δk

Figure: The sequences {dk} and {δk}.
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Theorem (SSO Lower Bound)

Let uk be the k-th iteration and uk+1 = SSO(uk). If E is strongly convex in
the sense of satisfying (E1), then

δk = E(uk)− E(uk+1) ≥ CL

N∑
i=1

‖ei‖2
V , CL :=

µ

2
.

Proof.

Since the fundamental orthogonality, J ′i (ei ) = E ′(vi ) = 0 in V ′i , holds, and
ei = vi − vi−1 ∈ Vi , in view of the quadric energy traps for Ji , we have

E(vi−1)− E(vi ) = Ji (0)− Ji (ei ) ≥
µ

2
‖ei‖2

V . (FO + Lower Trap)

which implies

E(uk)− E(uk+1) =
N∑
i=1

(E(vi−1)− E(vi )) ≥ µ

2

N∑
i=1

‖ei‖2
V . (Telescope)
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Theorem (SSO Upper Bound)

Let uk+1 be the k + 1st iteration in the SSO algorithm. Suppose that the space
decomposition satisfies Assumptions (SS1) and (SS2) and the energy E
satisfies Assumption (E1), then we have

dk+1 = E(uk+1)− E(u) ≤ CU

N∑
i=1

‖ei‖2
V , CU :=

C 2
SC

2
A

2µ
.

Proof (1 of 3)

Using the Reciprocal Upper Bound Lemma, with the choice v = uk+1 in (7), we
have

dk+1 = E(uk+1)− E(u) ≤ 1

2µ
‖E ′(uk+1)‖2

V′ .

Let’s estimate the operator norm.
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Proof (2 of 3)

For any w ∈ V, we choose a stable decomposition w =
∑N

i=1 wi , then

〈E ′(uk+1),w〉 =
N∑
i=1

〈E ′(uk+1),wi 〉 =
N∑
i=1

〈E ′(uk+1)− E ′(vi ),wi 〉 (FO)

=
N∑
i=1

N∑
j=i+1

〈E ′(vj)− E ′(vj−1),wi 〉 (Telescope)

≤ CS

(
N∑
i=1

‖ei‖2
V

)1/2( N∑
i=1

‖wj‖2
V

)1/2

(Strengthened CS, SS2)

≤ CSCA

(
N∑
i=1

‖ei‖2
V

)1/2

‖w‖V . (Stability, SS1)
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Proof (3 of 3)

Then

dk+1 = E(uk+1)− E(u) ≤ 1

2µ
‖E ′(uk+1)‖2

V′ (Reciprocal UB)

=
1

2µ

(
sup

0 6=w∈V

〈E ′(uk+1),w〉
‖w‖V

)2

(Operator Norm)

≤ 1

2µ
C 2
SC

2
A

N∑
i=1

‖ei‖2
V . (Step 2 Bound)
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Corollary (SSO Convergence)

Let uk be the k-th iteration and uk+1 = SSO(uk). Suppose that the space
decomposition satisfies Assumptions (SS1) and (SS2) and the energy E
satisfies Assumption (E1), then we have

E(uk+1)− E(u) ≤ ρ(E(uk)− E(u)), with ρ =
C 2
SC

2
A

C 2
SC

2
A + µ2

.

Proof.

Turn the Golden Key.
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Suppose we wish to solve the linear equation

Lh(u) = f on the fine-grid space Sh

using corrections from a coarse-grid space SH ⊂ Sh.

Two-Level Multigrid

Result: uk+1 = MG(uk)
v0 = uk ;
Smooth (Linear Gauss-Seidel) on the fine grid: v1 = S(v0);
Compute the coarse-grid defect:

dH := Rh(f − Lh(v1)) ∈ SH ; (Rh : Sh ↘ SH) (12)

Solve the coarse-grid correction problem: Find sH ∈ SH , such that

LH(sH) = dH −→ sH ∈ SH ; (13)

Apply the coarse-grid correction:

v2 := v1 + PHsH ; (PH : SH ↗ Sh) (14)

Smooth (Linear Gauss-Seidel) on the fine grid: v3 = S(v2);

uk+1 = v3;

Convergence of FASD S.M. Wise
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Now, suppose we wish to solve the nonlinear equation

Nh(u) = f on the fine-grid space Sh

using corrections from a coarse-grid space SH ⊂ Sh.

Two-Level (Classical) Full Approximation Storage (FAS) Scheme

Result: uk+1 = FAS(uk)
v0 = uk ;
Smooth (Nonlinear Gauss-Seidel) on the fine grid: v1 = S(v0);
Compute the coarse-grid τ -perturbation:

τH := NH(Qhv1) + Rh(f −Nh(v1)) ∈ SH ; (Qh,Rh : Sh ↘ SH) (15)

Solve the coarse-grid correction problem: Find ηH ∈ SH , such that

NH(ηH) = τH −→ sH := ηH − Qhv1 ∈ SH ; (16)

Apply the coarse-grid correction:

v2 := v1 + PHsH ; (PH : SH ↗ Sh) (17)

Smooth (Nonlinear Gauss-Seidel) on the fine grid: v3 = S(v2);

uk+1 = v3;

Convergence of FASD S.M. Wise
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FASD and Subspace Energies

• Fast Subspace Descent (FASD) generalizes SSO and FAS.

• In FASD, we must create energies/operators for the subspace (coarse grid)
problems. The subspace energy is denoted Ei : Vi → R.

• E ′i plays the role NH .

• Ei : Vi → R could be quadratic, e.g., Jacobian-type, as in Newton’s
Method.

• Ei could be the natural restriction of E (the Galerkin condition) as in SSO.

• We will need a “nice” projection operator, for example the L2 projection
operator. We label this

Qi : V → Vi .

• We also need a canonical restriction operator:

Ri : V → Vi ,

the transpose of the natural embedding

Ii : Vi → V.

Convergence of FASD S.M. Wise
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Fast Subspace Descent (FASD) Algorithm

Result: uk+1 = FASD(uk)
v0 = uk ;
for i = 1 : N do

Compute the so-called subspace τ -perturbation:

τi := E ′i (ξi )− RiE
′(vi−1) ∈ V ′i , ξi := Qivi−1; (18)

Solve the subspace correction problem: Find ηi ∈ Vi , such that

〈E ′i (ηi ),w〉 = 〈τi ,w〉, ∀w ∈ Vi  si := ηi − ξi ∈ Vi ; (19)

Orthogonalize the subspace correction via line search:

εi := α∗i si , where α∗i = argmin
α∈R

E(vi−1 + αsi ); (20)

Apply the subspace correction:

vi := vi−1 + εi ; (21)

end

uk+1 = vN ;

Convergence of FASD S.M. Wise
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fi (α)

qi (α)

α
αo
L,i

fi (α
o
L,i )α∗iαq

i

fi (0)

fi (α
∗
i )

qi (α
q
i )

αL,i

Figure: The energy section fi (α) := E(vi−1 + αsi ) and a quadratic approximation, qi .
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Generalizing SSO and FAS

Remark

We note that the FASD Algorithm generalizes the SSO Algorithm. They yield
the same approximations in the case that

Ei (η) := E(vi−1 − Qivi−1 + η), ∀ η ∈ Vi .

As a consequence of this choice, τi ≡ 0 and, for all w ∈ Vi ,

〈E ′(vi−1 + si ),w〉 = 〈E ′(vi−1 − Qivi−1 + ηi ),w〉 = 〈E ′i (ηi ),w〉 = 0.

With these choices in FASD, the line search (orthogonalization) is redundant.

Remark

The classical FAS algorithm of Achi Brandt is obtained by dropping the last
(orthogonalization) step.

Convergence of FASD S.M. Wise
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Theorem (FASD Lower Bound: Similar to SSO Lower Bound)

Suppose that E satisfies (E1), and let uk be the kth iteration in the FASD
Algorithm. Then

E(uk)− E(uk+1) ≥ µ

2

N∑
i=1

‖εi‖2
V .

Proof.

〈E ′(vi ),w〉 = 0, w ∈ span{si} =:W. (orthogonality)

Since vi − vi−1 = εi = α∗i si ∈ span{si},

E(vi−1)− E(vi ) ≥
µ

2
‖vi−1 − vi‖2

V =
µ

2
‖εi‖2

V . (Energy Trap for fi )

E(uk)− E(uk+1) =
N∑
i=1

(E(vi−1)− E(vi )) ≥ µ

2

N∑
i=1

‖εi‖2
V . (Telescope)
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Assumptions on Subspace Energies

(E3) (Strong convexity/Ellipticity:) There exists a constant µi such that for all
v ,w ∈ Vi

〈E ′i (w)− E ′i (v),w − v〉 ≥ µi‖w − v‖2
V .

(E4) (Lipschitz continuity of the first order derivative:) There exists a constant
Li > 0, such that

‖E ′i (w)− E ′i (v)‖V′ ≤ Li‖w − v‖V

for all w , v ∈ Bi := QiB+, where

B+ :=
{
v ∈ V

∣∣∣ dist2(v ,B) ≤ χ
}
, (inflated ball) (22)

and χ is given by

χ :=
2L2

µmini µ2
i

(E(u0)− E(u)).
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CH-Equation CH-Gallery Convex Optimization SSO FASD Extensions Numerics Concluding Remarks

Quadratic Trap for Ei

Proposition

The sets B+ ⊆ V and Bi ⊆ Vi are convex.

Lemma

Assume Ei satisfies assumptions (E3) and (E4). For any v ,w ∈ Bi ,

µi ‖w − v‖2
V ≤ 〈E

′
i (w)− E ′i (v),w − v〉 ≤ Li ‖w − v‖2

V ,

and

µi

2
‖w − v‖2

V+〈E ′i (v),w−v〉 ≤ Ei (w)−Ei (v) ≤ 〈E ′i (v),w−v〉+ Li

2
‖w − v‖2

V .

The lower bounds above hold for all w ∈ Vi , without restriction.

Remark

If Ei is quadratic, then we can take Bi = Vi , and Li , µi are simple.
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Theorem (FASD Upper Bound)

Suppose the space decomposition satisfies (SS1) and (SS2), the energy E
satisfies (E1) – (E2), and Ei satisfies (E3) – (E4). Then we have the upper
bound

E(uk+1)− E(u) ≤ CU

N∑
i=1

‖εi‖2
V ,

where CU := C 2
A [CS + L (1 + maxi{Li/µi})]2 /(2µ).

Proof (1 of 3)

Note, for any w ∈ V, we choose a stable decomposition w =
∑N

i=1 wi , then

〈E ′(uk+1),w〉 =
N∑
i=1

〈E ′(uk+1),wi 〉 = I1 + I2,

where I1 is similar to what we had in SSO and I2 is new:

I1 :=
N∑
i=1

〈E ′(uk+1)− E ′(vi ),wi 〉 and I2 :=
N∑
i=1

〈E ′(vi ),wi 〉.
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Proof (2 of 3)

Using the stability of the decomposition (SS1) and the strengthened
Cauchy-Schwartz inequality (SS2), I1 can be estimated in exactly the same way
as in the convergence proof for SSO. Therefore,

I1 ≤ CSCA

(
N∑
i=1

‖εi‖2
V

)1/2

‖w‖V . (SSO, Done)

For I2, we insert τi − E ′i (ξi + si ), which is zero in V ′i , use the Lipschitz
continuities to get

I2 =
N∑
i=1

〈E ′(vi )− E ′(vi−1)− E ′i (ξi + si ) + E ′i (ξi ),wi 〉

≤
N∑
i=1

(L‖εi‖V + Li‖si‖V) ‖wi‖V ,

provided ξi + si and ξi stay in Bi , which can be shown.
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Proof (3 of 3)

Recall εi = α∗i si . In a key technical lemma, we can show that µi
L
≤ α∗i . Thus,

I2 ≤
N∑
i=1

(
L‖εi‖V +

Li

α∗i
‖εi‖V

)
‖wi‖V ≤ L

N∑
i=1

(
1 +

Li

µi

)
‖εi‖V‖wi‖V

≤ L

(
1 +

N
max
i=1

Li

µi

)( N∑
i=1

‖εi‖2
V

)1/2( N∑
i=1

‖wi‖2
V

)1/2

(Discrete CS)

≤ LCA

(
1 +

N
max
i=1
{Li/µi}

)( N∑
i=1

‖εi‖2
V

)1/2

‖w‖V . (Stability, SS1)

Putting the I1 and I2 estimates together, we have, for any w ∈ V,

〈E ′(uk+1),w〉 ≤ CA

[
CS + L

(
1 +

N
max
i=1

Li

µi

)]( N∑
i=1

‖εi‖2
V

)1/2

‖w‖V ,

From here the result follows as in SSO.
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Corollary (Convergence of FASD)

Let uk be the k-th iteration and uk+1 = FASD(uk). Suppose that the space
decomposition satisfies Assumptions (SS1) and (SS2), the energy E satisfies
Assumption (E1) – (E2), and the energy Ei satisfies Assumption (E3) – (E4),
then we have

E(uk+1)− E(u) ≤ ρ(E(uk)− E(u)),

with

ρ =
C 2
A [CS + L (1 + maxi{Li/µi})]2

C 2
A [CS + L (1 + maxi{Li/µi})]2 + µ2

.

Furthermore if Ei is the quadratic energy (Li = µi = 1)

Ei (w) =
1

2
‖w − ξi‖2

V =
1

2
‖w − Qivi−1‖2

V , ∀w ∈ Vi , (23)

then

ρ =
C 2
A (CS + 2L)2

C 2
A (CS + 2L)2 + µ2

.

Proof.

Turn the Golden Key.
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A Brief Summary

• This seems great.

• FASD can be a lot cheaper that SSO.

• It looks more like FAS and allows for a lot of flexibility.

• But there is a problem.

• FASD isn’t FAS; there is an extra, potentially expensive line search step at
the end.

• Can this be eliminated?

Convergence of FASD S.M. Wise
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FASD With Approximate Line Search (FASD-ALS)

Result: uk+1 = FASD−ALS(uk)
v0 = uk ;
for i = 1 : N do

Compute the subspace τ -perturbation: let ξi = Qivi−1 and

τi := E ′i (ξi )− RiE
′(vi−1) ∈ V ′i ; (24)

Solve the subspace correction problem: Find ηi ∈ Vi , such that

〈E ′i (ηi ),w〉 = 〈τi ,w〉, ∀w ∈ Vi ,  si := ηi − ξi ∈ Vi , (25)

Apply the subspace correction using quadratic (approximate) step size:

vi := vi−1 + αq
i si , αq

i := −〈RiE
′(vi−1), si 〉
L‖si‖2

V
. (26)

end

uk+1 := vN ;

Convergence of FASD S.M. Wise
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Figure: The function fi (α) := E(vi−1 + αsi ) and a quadratic approximation, qi .
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Convergence Analysis Details

• Now, the last orthogonalization condition is broken. So the lower bound is
more challenging.

• We have opted instead to use a quadratic line search approximation.

• The quadratic line search approximation can be much more efficient.

• For the upper bound, the analysis is almost identical with that of the FASD
method. We only need a lower bound for αq

i , which is easily obtained.

Convergence of FASD S.M. Wise
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Corollary (Convergence of FASD-ALS)

Let uk be the k-th iteration and uk+1 = FASD−ALS(uk). Suppose that the
space decomposition satisfies Assumptions (SS1) and (SS2), the energy E
satisfies Assumptions (E1) – (E2), and the energy Ei satisfies Assumptions
(E3) – (E4), then we have

E(uk+1)− E(u) ≤ ρ(E(uk)− E(u)),

with

ρ =
C 2
A [CS + L (1 + maxi{Li/µi})]2

C 2
A [CS + L (1 + maxi{Li/µi})]2 + Lµ

,

where

CU = C 2
A

[
CS + L

(
1 + max

i
{Li/µi}

)]2

/(2µ) and CL =
L

2

Remark

As before, we get some simplification, Li = µi = 1, using

Ei (w) =
1

2
‖w − ξi‖2

V .
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Full Approximation Storage (FAS) = FASD With No Line Search

Result: uk+1 = FAS(uk)
v0 = uk ;
for i = 1 : N do

Compute the subspace τ -perturbation: let ξi = Qivi−1 and

τi := E ′i (ξi )− RiE
′(vi−1) ∈ V ′i ; (27)

Solve the subspace correction problem: Find ηi ∈ Vi , such that

〈E ′i (ηi ),w〉 = 〈τi ,w〉, ∀w ∈ Vi ,  si := ηi − ξi ∈ Vi . (28)

Apply the subspace correction using step size of 1:

vi := vi−1 + si . (29)

end

uk+1 := vN ;
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Convergence Analysis Details

• Again, the orthogonalization is broken. The lower bound is harder to
prove, requiring a few more technical lemmas.

• For the lower bound, we must require more from the subspace energy Ei ,
namely, some approximation property:

Approximation Property

(AP) Both E and Ei are twice Fréchet differentiable. Furthermore, there exists a
constant ε < µ/2 so that for all w ∈ B+ and all ui , vi ∈ Vi

|〈E ′′(w)ui , vi 〉 − 〈E ′′i (Qiw)ui , vi 〉| ≤ ε‖ui‖V‖vi‖V .

• The upper bound proof is similar to FASD.
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Corollary (Convergence of FAS)

Let uk be the k-th iteration and uk+1 = FAS(uk). Suppose that the space
decomposition satisfies Assumptions (SS1) and (SS2), the energy E satisfies
Assumption (E1) – (E2), and the energy Ei satisfies Assumption (AP) with
ε < µ/2, then we have

E(uk+1)− E(u) ≤ ρ(E(uk)− E(u)),

with

ρ =
(CS + ε)2C 2

A

(CS + ε)2C 2
A + µ(µ− 2ε)

,

where
CU = C 2

A(CS + ε)2/(2µ) and CL =
µ

2
− ε.
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A Nonlinear Problem

Suppose that Ω ⊂ Rd is a bounded open set, with a sufficiently regular
boundary. We consider the following problem: given f ∈ L2(Ω), find u ∈ H1

0 (Ω)
such that (

|u|p−2u, ξ
)

+ ε2 (∇u,∇ξ) = (f , ξ) , ∀ ξ ∈ H1
0 (Ω), (30)

where 2 ≤ p <∞, when d = 2 and 2 ≤ p ≤ 6, when d = 3, and ε > 0 is a
parameter.

Theorem

Suppose p is restricted as above. For any ν ∈ H1
0 (Ω), define the energy

E(ν) :=
1

p
‖ν‖pLp +

ε2

2
‖∇ν‖2 − (f , ν) , p ≥ 2. (31)

This functional is twice Fréchet differentiable; satisfies (E1) and (E2); and is
strictly convex, and coercive. Therefore, it has a unique global minimizer.
Furthermore, u ∈ H1

0 (Ω) is the unique minimizer of (31) iff it is the solution of
(30).
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Finite Element Approximation in 2D

• Now, suppose that Ω ⊂ R2 is a polygonal domain and TH is a conforming
triangulation of Ω.

• Let Th be the triangulation obtained by quadri-secting Th.

• Define

Sh :=
{
v ∈ C(Ω) ∩ H1

0 (Ω)
∣∣∣v |K ∈ P1(K), ∀K ∈ Th

}
.

With a similar definition for SH . Then, SH ⊂ Sh, and the containment is
proper.

• We shall consider the minimization of energy E restricted to Sh , which is
a subspace of H1

0 (Ω) (the Ritz Approximation),

min
v∈Sh

E(v),

and thus now V = Sh (finite dim.) with norm |v |1 = ‖∇v‖. Notice that
(E1) and (E2) still hold, as Sh ⊂ H1

0 (Ω).
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A Two-Level Subspace Decomposition

• Let N = {xi}Ni=1 ⊂ R2 be the set of interior nodes of Th and define the
Lagrange nodal basis

Bh = {ψi ∈ Sh | ψi (xj) = δi,j , 1 ≤ i , j ≤ N} .

Bh is a bona fide basis for Sh, and we may use the following decomposition

V =
N∑
i=0

Vi = Sh, (32)

where V0 = SH , Vi = span({ψi}), 1 ≤ i ≤ N.

Theorem (Subspace Decomposition Satisfies SS1 and SS2)

The decomposition of the finite element space Sh described in (32) satisfies
Assumption (SS1), and CA > 0 is independent of N and h. Furthermore, let E
be defined as in (31). Then Assumption (SS2) holds, and CS is independent of
N and h.
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Contraction Factors: FAS

Table: Numerical results of FAS (varying p and ε, fixed h = 1/64)

FAS ε2 = 1 ε2 = 1/2 ε2 = 1/4 ε2 = 1/8 ε2 = 10−1 ε2 = 10−2 ε2 = 10−3

p = 4 15 (0.195) 15 (0.193) 14 (0.189) 14 (0.186) 14 (0.186) 12 (0.164) 10 (0.133)
p = 5.5 14 (0.195) 14 (0.192) 14 (0.189) 14 (0.189) 14 (0.189) 12 (0.166) 11 (0.162)
p = 6 15 (0.195) 15 (0.192) 14 (0.190) 14 (0.190) 14 (0.189) 13 (0.167) 11 (0.167)
p = 8 15 (0.196) 15 (0.193) 15 (0.192) 14 (0.191) 14 (0.190) 13 (0.176) 12 (0.173)
p = 10 15 (0.198) 15 (0.196) 15 (0.194) 15 (0.192) 14 (0.191) 13 (0.178) 12 (0.170)
p = 20 16 (0.216) 16 (0.221) 16 (0.210) 15 (0.197) 15 (0.194) 14 (0.182) 13 (0.178)
p = 40 18 (0.267) 18 (0.273) 17 (0.248) 16 (0.209) 16 (0.204) 14 (0.188) 13 (0.180)
p = 80 21 (0.333) 21 (0.338) 20 (0.304) 18 (0.243) 17 (0.226) 15 (0.192) 14 (0.200)

• Original FAS.

• We consider standard multilevel nodal based space decomposition
V =

∑J
`=1

∑N`
i=1 span{φ`i }.

• Ei is defined as the restriction of E on the subspace V`,i := span{φ`i }.
• Newton’s method is used to solve the local nonlinear problem. Typically,

less than 5 iterations are needed for solving the local problems in all of our
numerical tests.
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Contraction Factors: FASq1

Table: Numerical results of FASq1 (varying p and ε, fix h = 1/64)

FASq1 ε2 = 1 ε2 = 1/2 ε2 = 1/4 ε2 = 1/8 ε2 = 10−1 ε2 = 10−2 ε2 = 10−3

p = 4 15 (0.193) 15 (0.189) 14 (0.185) 14 (0.180) 13 (0.179) 23 (0.331) -
p = 5.5 15 (0.192) 15 (0.189) 14 (0.186) 14 (0.184) 14 (0.183) - -
p = 6 15 (0.192) 15 (0.189) 14 (0.187) 14 (0.185) 14 (0.183) - -
p = 8 15 (0.193) 15 (0.190) 14 (0.190) 14 (0.191) 14 (0.186) - -
p = 10 15 (0.195) 15 (0.193) 14 (0.191) 14 (0.192) 14 (0.187) - -
p = 20 16 (0.211) 16 (0.215) 16 (0.215) 16 (0.216) 16 (0.220) - -
p = 40 18 (0.260) 18 (0.281) 19 (0.298) 21 (0.334) 23 (0.367) - -
p = 80 21 (0.342) 23 (0.383) 25 (0.407) 109 (0.844) - - -

• FASq1 details.

• We use the quadratic subspace energy

E`,i (w) =
1

2
‖w − ξ`,i‖2

V =
1

2
‖w − Q`,iv`,i−1‖2

V , ∀w ∈ V`,i ;

• Use the multilevel nodal based space decomposition V =
∑J
`=1

∑N`
i=1 V`,i .

• We skip the line-search/orthogonalization step.

Convergence of FASD S.M. Wise
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Contraction: FASq2

Table: Numerical results of FASq2 (varying p and ε, fix h = 1/64)

FASq2 ε2 = 1 ε2 = 1/2 ε2 = 1/4 ε2 = 1/8 ε2 = 10−1 ε2 = 10−2 ε2 = 10−3

p = 4 14 (0.190) 14 (0.187) 14 (0.183) 14 (0.181) 14 (0.181) - -
p = 5.5 14 (0.189) 14 (0.189) 14 (0.183) 14 (0.185) 14 (0.187) - -
p = 6 14 (0.188) 14 (0.186) 14 (0.185) 14 (0.188) 14 (0.190) - -
p = 8 14 (0.190) 14 (0.190) 14 (0.188) 14 (0.193) 15 (0.196) - -
p = 10 15 (0.191) 15 (0.191) 15 (0.193) 15 (0.199) 15 (0.202) - -
p = 20 15 (0.211) 16 (0.223) 17 (0.239) 18 (0.265) 20 (0.290) - -
p = 40 18 (0.264) 19 (0.300) 21 (0.334) 29 (0.452) 49 (0.643) - -
p = 80 21 (0.350) 24 (0.393) 32 (0.504) - - - -

• FASq2 details.

• We use space decomposition V =
∑J
`=1 V

`.

• We use the simple quadratic Ei .

• Corrections are computed by inverting an SPD matrix defined on V`. For
our example, this is equivalent to solving a discrete Laplacian matrix on
each level, which is still expensive.

• Therefore, we solve the discrete Laplacian matrix approximately by just
applying one step of symmetric Gauss-Seidel method.
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Complexity

Table: Computational complexity comparison with ε = 1 and p = 6

FAS FASq2
h #iter CPU time #iter CPU time

1/32 15 1.65 14 0.03
1/64 15 7.86 14 0.05

1/128 16 45.60 14 0.16
1/256 16 391.08 15 0.49
1/512 16 >1,000 15 1.67

1/1024 16 >1,000 15 7.12

Convergence of FASD S.M. Wise
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Concluding Remarks

1 We have proven that a generalization of FAS, FASD, converges globally
and geometrically.

2 Proofs are based on viewing FASD as an inexact SSO method.

3 In the finite dimensional case, this convergence does not deteriorate as
h→ 0 (i.e., as the degrees of freedom, N, increase).

4 The complexity of FASD/FAS can be significantly less than SSO.

5 Convergence of the classical FAS method requires an extra approximation
assumption.

6 Everything works well for the second-order nonlinear problem. The
Stationary Cahn-Hilliard Equation is a bit more delicate.

7 The difficulty in the CH setting is dealing with the negative norms. This
FASD theory will need to be extended to the mixed (saddle point) setting
to achieve a truly efficient method.

Convergence of FASD S.M. Wise
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Thanks. Questions?

NSF-DMS 1719854.
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