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Viscous Cahn-Hilliard equation : A. Miranville-S. Zelik

Cahn-Hilliard equation :
(—A) "Gt — Autf(u) — {f(u)) =0

Ou
5 =0 on I‘
M’tfo = Uo

(—A)~!: inverse minus Laplace operator with Neumann BCs on functions
with vanishing average

() = vaiay Jo

Conservation of mass : (u(t)) = (up), t >0



Assumption : (ug) = my, |mo| <1 —k, k € (0,1)
Set, formg € [—1 + Kk, 1 — K]

Dy = {g € H*(Q), 22 =0onT,
gllzoo (@) < 1, (g) = mo, f(q) € 12(0),
A’q — Af( ) e H'(Q)}

lqll3,, = lallzzq) + IF (@)1 +
I\Azq—Af(cI)lle )

A function u is solution if u € L>(0, T; D,,,) N C([0, T); H~1()), VT > 0,
and the equation is satisfied in the sense of distributions



Viscous Cahn-Hilliard equation :

g + (=A)T' Y — Au f(u) — (f(u)) =0, B> 0

3 = OonT
uli—o = uo
Set

Db, = {q € HX(Q %:Oonf,

),
gl < 1, (q) = mo, f(q) € L*(Q),
\/BqﬁELz( ), cbe)H‘](ﬂ),

o= B+ (=AY (Ag—flq) + (@)}

lallZs = el + (@I
BllI: 0 + ||¢HH,1(Q)



Difficulty : prove that u is a priori separated from +1
e Dissipative estimate :
+1
[ ()Hzﬁ + NG I s <
(Iluolngo) X(1—1)+cp, t20, B=0

x : Heaviside function
Cx, C), :independent of u and 3

e Consequence : Vi > 0

t+1 5
/ 1) e s < s 1>
t

Cr,u - independent of 8 > 0,1, u

— u(t,x)| < 1, a.e. (t,x)



Do we have

lu(@)llzee@) <1 -6, 6 € (0,1)?
Can be proved in general only for 8 > 0 :

Theorem : We assume that 5 > 0. Then, Vi > 0,

Hu<t)||L°°(Q) <l1l- 56,/-;,#; t >,
where d3 ., € (0, 1) is independent of u. Furthermore, if
lluo || () < 1 — b0, do € (0, 1), then

()| oo () < 1= 8,5 £ >0,
where §; € (0, 1) is independent of u.



Remarks :
(i) We can rewrite the equation in the form

Ou Ou
B, — Dutfu) = —(=A)7'=0 + (f(u))

(ii) If [[uol| oo () < 1, the solution u(t) of the viscous Cahn-Hilliard equation
is strictly separated from +1 for ¢ > 0

(iii) Both ¢ and ¢’ tend to O as 3 — 0
— We cannot say anything for the Cahn-Hilliard equation

(iv) This is true for the Cahn-Hilliard equation under the additional
assumption

() < e(lf(s)* +1), s € (=1,1)

Not satisfied by logarithmic potentials



(v) True in 1D, due to the continuous embedding H lcce

(iv) In 2D, using the embedding of H' into an Orlicz space : true if
I ()] < Cflta g (-1,1)

Satisfied by logarithmic potentials

Idea of the proof :

We consider the equation

5% — Au+f(u)=h, he L0, T;H(Q)), f >0

It suffices to obtain an estimate of the form

'@l r@xor) < cp,T), p=>1,T>0
(p = 4 is sufficient)



Lemma : We have
/ Ml dxdr < ¢(T), L>0, T > 0.
Qx(0,T)

Multiply the equation by f (u)e/ ()]

Use the young’s inequality

ab < ¢(a) +1(b), a, b >0

ps)=e —s—1, () =(1+s)In(l+s)—s5, s>0
— We obtain

fQX(O,T) V\(u)’zelzlf(u)' dxdl S CfQX(OJ‘) ec’|h| dxdt



We conclude by using the Orlicz embedding
/ oM < & WM™ ¢ gt (@)
Q
We use the inequality

] < e Ifl+c2

S W) EL(Q X (0.7)), T>0,p>1



Remark : Degenerate mobility of the form x(s) = 1 — s and logarithmic
nonlinear term :

One regularizes the mobility and the nonlinear term
— Existence of a weak solution

Simplification : k(s)f’(s) is not singular

Separation (not strict one) from the pure states

Degenerate mobility and regular nonlinear term : existence of a generalized
solution, separation from the pure states



Allen-Cahn equation :

0
ait‘ — Au+f(u) =0
Comparison principle : strict separation property
More generally :
0
5 — Autf(u) = g(x.1)

geL>®(Qx(0,T)), VT >0
Caginalp phase-field system :

6%—Au+f(u):9, 30

00 Ou
Z A= -
68t o 8t’5>0



u : order parameter
0 : relative temperature

Models phase transition phenomena (e.g., ice)

8=6=0:
—Au+f(u) =20
Ou
AH—E

Laplacian of the first equation :

—A%u+ Af(u) = A9

— Cahn—Hilliard equation



8>0,0=0:

0
ﬁa—j—Au—I—f(u):O

Ju
A = —
ot
— Viscous Cahn-Hilliard equation
— "Contains" both equations
We can derive an L>°(Q2 x (0, T)) estimate on 6

— Strict separation property



Generalization :

ol __ 0
FZ—Au—l—f(u)—ﬁ
[oate] Jda _ ., Ou
e Ta —Aa=—u—jg

a= fot 0 ds + oy : thermal displacement variable
Based on the Maxwell-Cattaneo law

By approximating f as above : existence of a solution such that

lu(x, )| < lae. (x,1) € Q2 x(0,T)



Strict separation property : more involved

One possibility : prove an L*>°(£2)-estimate on %—‘;‘
The best we can have in general :

Oa
HEHLoo(o,T;Hg(Q)) <c(T), T>0

Here : up € H{(Q) x H3 (), ap € HY () x H3(Q), a1 € HY(Q) x H*(Q)



In one space dimension : we can conclude with the continuous embedding
H'(Q) CcC(Q)

We can also prove the strict separation in two space dimensions

We need ans estimate of the form

If' @l r@xor) < cp,T), p>1,T>0
(p = 4 is sufficient)

Lemma : We have

/ Ml dxdr < ¢(T), L>0, T > 0.
Qx(0,T)



.
Multiply the equation by f (u)el/ (4]

Use the young’s inequality

ab < ¢(a) +(b), a, b =20
o) =€ —s—1, () =1+s)In(l+s5)—s,5s>0

— We obtain

Joxo.n) If ()2 dxdr < ¢
+2 fo(o T) 1% dx di

We conclude by using the Orlicz embedding

/ 2
/ My < e (HVHH‘(Q)H), Ve HI(Q)
Q



We assume that

lf/| < eI
(True for the logarithmic nonlinear terms)
—f'(u) e P(Q%x(0,T)), T>0,p>1
Differentiating the equation for u with respect to ¢ :

ou . —
E €L (OvTvHO(Q))

Inject in the equation for « :

— 98 ¢ 1°(0,T; H*(Q))



In three space dimensions : we need
f(u) € L5(Q % (0,7)), T >0

6
We can conclude when || < ¢[f]5 + ¢/
— Not satisfied by the logarithmic nonlinear terms

Satisfied when f has a growth of the form

ﬁ,r25,c>0

close to =1



Higher-order Cahn-Hilliard equations :
We are not able to prove the existence of classical solutions
Example : Phase-field crystal equation

gb; — A%u—2A% — Af(u) =0

Atomistic models of crystal growth (K. Elder et al.)

Simulation methodology for problems in materials science where atomic- and
microscales are tightly coupled

Operates on atomic length and diffusive time scales

Constitutes a computationally efficient alternative to molecular simulation
methods



Associated free energy :

1
U= /(2|Au|2 — |Vu|* + F(u))dx, F =f
Q
) : domain occupied by the system
Evolution equation :
ou o
I
ot ou
)

S variational derivative



Regular nonlinear terms :

Typically : f(s) = g - % +as
Mathematical analysis : M. Grasselli, H. Wu
Well-posedness, regularity of solutions
Existence of finite-dimensional attractors
Convergence of trajectories to steady states

Numerical analysis, simulations : S. Wise et al., M. Grasselli, M. Pierre



Logarithmic nonlinear terms :
Approximated problems :

ag;\/ — A3uN - 2A2u1\1 - AfN(uN) =0

un|i=o = uo

Well-posedness, regularity : standard



A priori estimates :

dE, Ou
— o e(En A+ w0y + vl + 175, -1 @)

S CIHMN”%—]—‘(Q) + C”, c > 0

Ey =< uy > +|vwl ) + lun|* + C(| Avy]? —2||VVN||2+2/ Fy(uy) dx)
Q

¢ > O0small, vy = uy — <u0>

cllimlBoy + | P ) < By < oy + [ Flun) ), ¢ 0



No estimate on fy(uy) in L?
— We cannot pass to the limit in the nonlinear term
— We cannot prove the existence of a classical solution

We can prove the existence of weaker solutions, based on a variational
inequality



Relevant logarithmic nonlinear term : f(s) = In(1 4+ s), s > —1
(More generally : f(s) = In(1 +s) + (a — 1)s)
Follows from the potential F(s) = (1 4+ s)In(l +5) — s, f = F’

— Not a double-well potential, contrary to the classical Cahn-Hilliard theory
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Properties of f :
e f is monotone increasing
— Essential to introduce the variational inequality

e There exists a nonnegative convex function ¢ such that

) [F(5)] < pls).s > —1

(i) o(w) € L'((0,T) x Q), whenever w € L((0,T) x §2) and
flw) € LY((0,T) x Q), T >0

— Essential for the uniqueness of variational solutions
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Approximated problems :
We introduce the C!' — functions fy, N € N, defined by

n(s) = f(s)’SZ—l_i_%
TV D+ T+ s+ 1= b s <144

Properties of fy :
e fy is monotone increasing

.fN(S)S > FN( ) > 0 s €R, FN fOfN



e For every m > —1, there exist two constants k; = r;(m) > 0 and

Ky = Kp(m) > 0 such that, at least for N > Ny = Ny(m) large enough,
ING) (s —m) > Kilfn(s)| — k2, sER

e For every m > —1, there exist two constants k3 = x3(m) > 0 and

k4 = ka(m) > 0 such that, at least for N > Ny = Ny(m) large enough,
fn(s)(s —m) > k3Fn(s) — K4, s €R

Remark : If —1 +m; <m < my, my, my > 0, then K1, ..., k4 can be chosen
so that they only depend on m; and m,



Approximated problems :

aaiév — A3MN — ZAZMN — AfN(uN) =0

un|i=o = uo

Well-posedness, regularity : standard



Uniform a priori estimates :

We assume that

oup(x) > —lae. xe

o —1+my < (up) < my, my, my > 0 fixed (independently of up)

We have

(un (1)) = (uo), 120



Furthermore

dE 8uN
o BNl Gy + W)l + 175, 1)

<c ||MN”H_](Q) + ”, c>0

Ey =< uy > +[lww|2; + [lun | + (|| Avy|? —2||VVN||2+2/QFN(MN)dX)

¢ > Osmall, vw = uy — (up)

cllinlFay + [ Pl ds) < Ex < iRy + [ Fulam)do). e >0



Remark : Dissipative estimate : we are not able to absorb the right-hand side

Usual Cahn-Hilliard logarithmic nonlinear term : we can construct fy such
that

Fn(s) > est =, e>0
¢, ¢’ independent of N

— We can derive a dissipative estimate



Variational solutions :
We rewrite the equation in the form

1 Ou
ot
We multiply by u — w, w = w(x) smooth, (w) = (up) :

(—A)~ + A%u+2Au+f(u) — (f(u)) =0

lau

((=8)7 = u = w)) + ((Au, Alu —w))) = 2((Vu, V(u —

ot’

+((f(w),u —w)) =0

w)))



f is monotone increasing :

(((—A)_l%, u—w)) + ((Au, Alu —w))) = 2((Vu, V(u = w)))

+((f(w),u—w)) <0

(variational inequality (V1))



Definition : We assume that uy € H?(Q), with ug(x) > —1 a.e. x € . Then,
u = u(t,x) is a variational solution if

(i) u(t,x) > —1lae. (t,x)

(i) u € C([0, T); H-1(2)) N L>(0, T; H*()) N L*(0, T; H*(Q)), VT > 0
(iii) 24 € L2(0, T; H~'(Q)), VT > 0

(v) f(u) € L'((0,T) x Q), VT >0

(V) u(0) = uo

(vi) (u(r)) = (up), t >0

(vii) the variational inequality (VI) is satisfied for every ¢ > 0 and every test
function w = w(x) such that w € H?(Q), f(w) € L'(Q) and (w) = (u)



Uniqueness of variational solutions : we need to define time-dependent test
functions

We call admissible any function w = w(#,x) such that
w e C([0,T); H1(Q)) N L>(0, T; H*(2)), f(w) € L'((0,T) x Q),
v ¢ 120, T; H1(Q)), VT > 0, and (w(t)) = (ug), t > 0

We take w = w(t, .), for almost every ¢ > 0 : (vii) can be replaced by

2 5 =) + (0 A= ) = 2((F, V= )

+((f(w),u —w))]dE <0

for all 0 < s < r and for every admissible test function w = w(r,x) (all terms
are L! with respect to time)



We need a second variational inequality : we set

wy = (1 =n)u+mnz, n€(0,1]
We have
If (w)| < () + ¢(2)
— wy is an admissible test function

Take w = w,;, and divide by 7 :



Pass to the limit  — 0 (Lebesgue’s dominated convergence theorem) :

2715 )+ (A~ )~ 20T V- )

+((f (), u = 2))]d€ <O

for all 0 < s < t and for every admissible test function z = z(¢, x)

Combine the two variational inequalities (all terms are absolutely
continuous) : if u#; and u, are two solutions such that (u;(0) = (u2(0))

Slun(e) — w21 — Sl (5) — wa(s)]12

+ / (1A — w)|P — 2]V — u)[[?) d < 0



This yields

lar (#) = w2 (6) | 1) < e Jur (5) = a(s)ll -1

Pass to the limit s — O :

lur (1) — w2 (D)l -1(c2) < e[l (0) = w2(0) |1 (s 72 0



Theorem : We assume that ug € H*(Q), ug(x) > —1 a.e. x € Q, and
—1+m; < (up) < my, with my, my > 0 fixed. Then, there exists a unique
variational solution u

Note that uy satisfies

/t[(((A)_lauN, uy —w)) + ((Aun, Aluy —w))) = 2((Vu, V(uy — w)))

+((fv(w),uy — w))]d¢ <0

for all 0 < s < t and for every admissible test function w = w(z, x)



uy converges to a limit function « in the following sense :
uy — win L0, T; H*(Q)) weak — x and L*(0, T; H*(Q2)) weak

8”]\/ 8” . 2 X —1
5 B inL“(0,T; H " (R2)) weak

uy — uin C([0, T]; H*(Q)), L*(0, T; H*(Q)) and a.e. in (0,T) x
Only difficulty : passage to the limit in | "((fy(w), uy — w)) d€
By construction :

v(w)| < IF(w)|

Lebesgue’s dominated convergence theorem (f(w) € L'((0,T) x Q))



Separation property :

fw(uy) is uniformly bounded in L' ((0, T) x €2) and explicit expression of fy :

1 1
meas{(t,x) € (0,T) x Q, up(t,x) < —1+ ﬁ} < cp(ﬁ), M >N

1
p(s) = ——7
f(s—1)]
¢ independent of N and M

Pass to the limit M — +oo (Fatou’s Lemma) and then N — +00 (¢(s) — 0
ass — 0):

meas{(t,x) € (0,T) x Q, u(t,x) < -1} =0



flu) € L'((0,T) x Q) :

Almost everywhere convergence of uy to u and explicit expression of fy :

fn(uy) = f(u) ae.in (0,T) x Q

Fatou’s lemma :

@)l (0,r)x0) < Hminf [[fy (un) || 0,1y x0) < +00



Remark : We can prove the existence (and uniqueness) of variational
solutions in

Dy my, = {v €L®(Q), w(x) > —lae. xe,
<w>=m, =1 +m <m<m}

my, my >0

These solutions regularize instantaneously



Remark : We have similar results for the usual Cahn-Hilliard nonlinear term

F(s) = —00s* + 601 ((1 +5) In(1 + 5)
+(1 —s)In(1 —s))

(s) F( ) = —20ps + 01 In £
( ) ), 0< 6 <t

In that case, we also have a dissipative estimate

— We can prove the existence of finite-dimensional attractors



