Doubly nonlocal Cahn-Hilliard equations

Ciprian G. Gal

Florida International University, Department of Mathematics, Miami, Florida 33196, USA

May, 2019

The classical form of the CHE

- Cahn and Hilliard 1958: model for (isothermal) phase separation phenomena in materials made of two components.

$$
\partial_{t} \varphi+\operatorname{div}(M)=0, \mu=-\Delta \varphi+F^{\prime}(\varphi), \text { in } \Omega \times(0, \infty)
$$

The classical form of the CHE

- Cahn and Hilliard 1958: model for (isothermal) phase separation phenomena in materials made of two components.

$$
\partial_{t} \varphi+\operatorname{div}(M)=0, \mu=-\Delta \varphi+F^{\prime}(\varphi), \text { in } \Omega \times(0, \infty) .
$$

- φ is the relative difference of the two phases with ± 1 corresponding to pure phases; $\varphi \in(-1,1)$ corresponds to the transition in the interface between the two material phases.

The classical form of the CHE

- Cahn and Hilliard 1958: model for (isothermal) phase separation phenomena in materials made of two components.

$$
\partial_{t} \varphi+\operatorname{div}(M)=0, \mu=-\Delta \varphi+F^{\prime}(\varphi), \text { in } \Omega \times(0, \infty) .
$$

- φ is the relative difference of the two phases with ± 1 corresponding to pure phases; $\varphi \in(-1,1)$ corresponds to the transition in the interface between the two material phases.
- Mass flux $M=-m(\varphi) \nabla \mu ; m$ is mobility, μ is called the chemical potential and is determined as

$$
E_{l o c}(\varphi)=\int_{\Omega}\left(\frac{1}{2}|\nabla \varphi|^{2}-\theta_{c} \varphi^{2}+\theta F(\varphi)\right) d x
$$

assuming

$$
M \cdot v=\nabla \varphi \cdot v=0 \text { on } \partial \Omega \times(0, \infty) ;
$$

The classical form of the CHE

- Cahn and Hilliard 1958: model for (isothermal) phase separation phenomena in materials made of two components.

$$
\partial_{t} \varphi+\operatorname{div}(M)=0, \mu=-\Delta \varphi+F^{\prime}(\varphi), \text { in } \Omega \times(0, \infty) .
$$

- φ is the relative difference of the two phases with ± 1 corresponding to pure phases; $\varphi \in(-1,1)$ corresponds to the transition in the interface between the two material phases.
- Mass flux $M=-m(\varphi) \nabla \mu ; m$ is mobility, μ is called the chemical potential and is determined as

$$
E_{l o c}(\varphi)=\int_{\Omega}\left(\frac{1}{2}|\nabla \varphi|^{2}-\theta_{c} \varphi^{2}+\theta F(\varphi)\right) d x
$$

assuming

$$
M \cdot v=\nabla \varphi \cdot v=0 \text { on } \partial \Omega \times(0, \infty) ;
$$

- No phase separation when $\theta>\theta_{c}$ but only when $\theta<\theta_{c}$ (The early stages of the universe)!!!

The classical form of the CHE

- F is a logarithmic (bounded in \mathbb{R}) potential

$$
F(r)=(1+r) \log (1+r)+(1-r) \log (1-r)
$$

often replaced by a regular (unbounded in \mathbb{R}) polynomial $F(r)=r^{4}$.

The classical form of the CHE

- F is a logarithmic (bounded in \mathbb{R}) potential

$$
F(r)=(1+r) \log (1+r)+(1-r) \log (1-r)
$$

often replaced by a regular (unbounded in \mathbb{R}) polynomial $F(r)=r^{4}$.

- Conservation of "mass":

$$
\frac{d}{d t} \int_{\Omega} \varphi(t, x) d x=0 \Rightarrow \int_{\Omega} \varphi(t, x) d x=\int_{\Omega} \varphi(0, x) d x
$$

The classical form of the CHE

- F is a logarithmic (bounded in \mathbb{R}) potential

$$
F(r)=(1+r) \log (1+r)+(1-r) \log (1-r)
$$

often replaced by a regular (unbounded in \mathbb{R}) polynomial $F(r)=r^{4}$.

- Conservation of "mass":

$$
\frac{d}{d t} \int_{\Omega} \varphi(t, x) d x=0 \Rightarrow \int_{\Omega} \varphi(t, x) d x=\int_{\Omega} \varphi(0, x) d x
$$

- Real-world applications:

$$
\text { either } m(r) \equiv m_{0}>0 \text { or } m(r)=m_{0}\left(1-r^{2}\right), r \in[-1,1] \text {. }
$$

The classical form of the CHE

The classical form of the CHE

- Constant mobility case:

The classical form of the CHE

- Constant mobility case:
(1) Cherfils-Miranville-Zelik 2011 (survey paper).

The classical form of the CHE

- Constant mobility case:
(1) Cherfils-Miranville-Zelik 2011 (survey paper).
(2) Global well-posedness of weak (energy) solutions: Debussche-Dettori 1995 (F is logarithmic), Elliott 1989 (F is polynomial), Kenmochi-Niezgodka-Pawlow 1995 (both polynomial and logarithmic).

The classical form of the CHE

- Constant mobility case:
(1) Cherfils-Miranville-Zelik 2011 (survey paper).
(2) Global well-posedness of weak (energy) solutions: Debussche-Dettori 1995 (F is logarithmic), Elliott 1989 (F is polynomial), Kenmochi-Niezgodka-Pawlow 1995 (both polynomial and logarithmic).
(3) Regularity and global longtime behavior: Miranville-Zelik 2004, Abels-Wilke 2007 (F is logarithmic).

The classical form of the CHE

- Constant mobility case:
(1) Cherfils-Miranville-Zelik 2011 (survey paper).
(2) Global well-posedness of weak (energy) solutions: Debussche-Dettori 1995 (F is logarithmic), Elliott 1989 (F is polynomial), Kenmochi-Niezgodka-Pawlow 1995 (both polynomial and logarithmic).
(3) Regularity and global longtime behavior: Miranville-Zelik 2004, Abels-Wilke 2007 (F is logarithmic).
- Degenerate mobility:

The classical form of the CHE

- Constant mobility case:
(1) Cherfils-Miranville-Zelik 2011 (survey paper).
(2) Global well-posedness of weak (energy) solutions: Debussche-Dettori 1995 (F is logarithmic), Elliott 1989 (F is polynomial), Kenmochi-Niezgodka-Pawlow 1995 (both polynomial and logarithmic).
(3) Regularity and global longtime behavior: Miranville-Zelik 2004, Abels-Wilke 2007 (F is logarithmic).
- Degenerate mobility:
(1) Existence result for a weak (energy) solution: Elliott-Garcke 1996 (F is logarithmic).

The classical form of the CHE

- Constant mobility case:
(1) Cherfils-Miranville-Zelik 2011 (survey paper).
(2) Global well-posedness of weak (energy) solutions: Debussche-Dettori 1995 (F is logarithmic), Elliott 1989 (F is polynomial), Kenmochi-Niezgodka-Pawlow 1995 (both polynomial and logarithmic).
(3) Regularity and global longtime behavior: Miranville-Zelik 2004, Abels-Wilke 2007 (F is logarithmic).
- Degenerate mobility:
(1) Existence result for a weak (energy) solution: Elliott-Garcke 1996 (F is logarithmic).
(2) Uniqueness and regularity still open issues!!!

Is the classical form general enough?

- Derivation of the classical CHE is purely phenomenological!!! Cahn-Hilliard 1958, Gurtin 1996 (second law)

Is the classical form general enough?

- Derivation of the classical CHE is purely phenomenological!!! Cahn-Hilliard 1958, Gurtin 1996 (second law)
- It does not arise from a microscopic particle system (such as the Ising model) in a suitable limit!

Is the classical form general enough?

- Derivation of the classical CHE is purely phenomenological!!! Cahn-Hilliard 1958, Gurtin 1996 (second law)
- It does not arise from a microscopic particle system (such as the Ising model) in a suitable limit!
- Giacomin-Lebowitz $1997 \Longrightarrow$ nonlocal version of CHE .

Is the classical form general enough?

- Derivation of the classical CHE is purely phenomenological!!! Cahn-Hilliard 1958, Gurtin 1996 (second law)
- It does not arise from a microscopic particle system (such as the Ising model) in a suitable limit!
- Giacomin-Lebowitz $1997 \Longrightarrow$ nonlocal version of CHE.
- $E_{\text {loc }}$ occurs as a first order-approximation of the nonlocal free energy

$$
\begin{aligned}
E_{\text {nonloc }}(\varphi) & =\frac{1}{4} \int_{\Omega} \int_{\Omega} J(x-y)|\varphi(x)-\varphi(y)|^{2} d x d y \\
& +\int_{\Omega} \theta F(\varphi)-\theta_{c} \varphi^{2} d x
\end{aligned}
$$

where

$$
\theta_{c}:=\frac{1}{2} \int_{\Omega} J(x-y) d y
$$

Is the classical form general enough?

- Run simulation of Ising particle model:
https://www.youtube.com/watch?v=kjwKgpQ-I1s

Is the classical form general enough?

- The nonlocal CHE reads

$$
\partial_{t} \varphi+\operatorname{div}(M)=0, \mu=a(x) \varphi-J * \varphi+F^{\prime}(\varphi), \text { in } \Omega \times(0, \infty),
$$

where

$$
(J * \varphi)(x):=\int_{\Omega} J(x-y) \varphi(y) d y, \quad a(x):=\int_{\Omega} J(x-y) d y .
$$

Is the classical form general enough?

- The nonlocal CHE reads

$$
\partial_{t} \varphi+\operatorname{div}(M)=0, \mu=a(x) \varphi-J * \varphi+F^{\prime}(\varphi), \text { in } \Omega \times(0, \infty)
$$

where

$$
(J * \varphi)(x):=\int_{\Omega} J(x-y) \varphi(y) d y, \quad a(x):=\int_{\Omega} J(x-y) d y
$$

- Interaction between particles is reflected through a symmetric J.Assume again

$$
M \cdot v=0 \text { on } \partial \Omega \times(0, \infty)
$$

Is the classical form general enough?

- The nonlocal CHE reads

$$
\partial_{t} \varphi+\operatorname{div}(M)=0, \mu=a(x) \varphi-J * \varphi+F^{\prime}(\varphi), \text { in } \Omega \times(0, \infty)
$$

where

$$
(J * \varphi)(x):=\int_{\Omega} J(x-y) \varphi(y) d y, \quad a(x):=\int_{\Omega} J(x-y) d y
$$

- Interaction between particles is reflected through a symmetric J.Assume again

$$
M \cdot v=0 \text { on } \partial \Omega \times(0, \infty)
$$

- We still have conservation of mass!

The nonlocal CHE of Giacomin-Lebowitz 1997

Fact

The NCHE \Longrightarrow (second-order) quasi-linear equation:

$$
\begin{aligned}
& \partial_{t} \varphi+\nabla \cdot(m(\varphi) q(x, \varphi) \nabla \varphi+m(\varphi) \nabla a \varphi-m(\varphi) \nabla J * \varphi)=0, \\
& q(x, \varphi)=a(x)+F^{\prime \prime}(\varphi) .
\end{aligned}
$$

The nonlocal CHE of Giacomin-Lebowitz 1997

- Degenerate mobility: $m(r)=m_{0} / F^{\prime \prime}(r)=m_{0}\left(1-r^{2}\right)$, $r \in[-1,1]$.

The nonlocal CHE of Giacomin-Lebowitz 1997

- Degenerate mobility: $m(r)=m_{0} / F^{\prime \prime}(r)=m_{0}\left(1-r^{2}\right)$, $r \in[-1,1]$.
(1) Well-posedness of weak (energy) solutions: Gajewski-Zacharias 2003, S. Frigeri-Grasselli-Rocca 2015.

The nonlocal CHE of Giacomin-Lebowitz 1997

- Degenerate mobility: $m(r)=m_{0} / F^{\prime \prime}(r)=m_{0}\left(1-r^{2}\right)$, $r \in[-1,1]$.
(1) Well-posedness of weak (energy) solutions: Gajewski-Zacharias 2003, S. Frigeri-Grasselli-Rocca 2015.
(2) Some regularity and long-time behavior: Gal-Grasselli 2014, Londen-Petzeltova 2011.

The nonlocal CHE of Giacomin-Lebowitz 1997

- Degenerate mobility: $m(r)=m_{0} / F^{\prime \prime}(r)=m_{0}\left(1-r^{2}\right)$, $r \in[-1,1]$.
(1) Well-posedness of weak (energy) solutions: Gajewski-Zacharias 2003, S. Frigeri-Grasselli-Rocca 2015.
(2) Some regularity and long-time behavior: Gal-Grasselli 2014, Londen-Petzeltova 2011.
(3) $m(r) F^{\prime \prime}(r) \geq m_{0}$. Maximal L^{p}-regularity (Giorgini-Frigeri-Gal-Grasselli 2017) \Longrightarrow complete picture!!!

The nonlocal CHE of Giacomin-Lebowitz 1997

- Degenerate mobility: $m(r)=m_{0} / F^{\prime \prime}(r)=m_{0}\left(1-r^{2}\right)$, $r \in[-1,1]$.
(1) Well-posedness of weak (energy) solutions: Gajewski-Zacharias 2003, S. Frigeri-Grasselli-Rocca 2015.
(2) Some regularity and long-time behavior: Gal-Grasselli 2014, Londen-Petzeltova 2011.
(3) $m(r) F^{\prime \prime}(r) \geq m_{0}$. Maximal L^{p}-regularity (Giorgini-Frigeri-Gal-Grasselli 2017) \Longrightarrow complete picture!!!
- Constant mobility: $m(r)=m_{0}>0$.

The nonlocal CHE of Giacomin-Lebowitz 1997

- Degenerate mobility: $m(r)=m_{0} / F^{\prime \prime}(r)=m_{0}\left(1-r^{2}\right)$, $r \in[-1,1]$.
(1) Well-posedness of weak (energy) solutions: Gajewski-Zacharias 2003, S. Frigeri-Grasselli-Rocca 2015.
(2) Some regularity and long-time behavior: Gal-Grasselli 2014, Londen-Petzeltova 2011.
(3) $m(r) F^{\prime \prime}(r) \geq m_{0}$. Maximal L^{p}-regularity (Giorgini-Frigeri-Gal-Grasselli 2017) \Longrightarrow complete picture!!!
- Constant mobility: $m(r)=m_{0}>0$.
(1) Regular polynomial potential F: well-posedness (Bates-Han 2005, Colli-Frigeri-Grasselli 2012), long-time behavior (Gal-Grasselli 2014, Frigeri-Gal-Grasselli 2016).

The nonlocal CHE of Giacomin-Lebowitz 1997

- Degenerate mobility: $m(r)=m_{0} / F^{\prime \prime}(r)=m_{0}\left(1-r^{2}\right)$, $r \in[-1,1]$.
(1) Well-posedness of weak (energy) solutions: Gajewski-Zacharias 2003, S. Frigeri-Grasselli-Rocca 2015.
(2) Some regularity and long-time behavior: Gal-Grasselli 2014, Londen-Petzeltova 2011.
(3) $m(r) F^{\prime \prime}(r) \geq m_{0}$. Maximal L^{p}-regularity (Giorgini-Frigeri-Gal-Grasselli 2017) \Longrightarrow complete picture!!!
- Constant mobility: $m(r)=m_{0}>0$.
(1) Regular polynomial potential F: well-posedness (Bates-Han 2005, Colli-Frigeri-Grasselli 2012), long-time behavior (Gal-Grasselli 2014, Frigeri-Gal-Grasselli 2016).
(2) Logarithmic potential F : maximal L^{p}-regularity and long-term behavior (Giorgini-Gal-Grasselli 2017: 2D results only) 3D case still open!!!

Why doubly nonlocal CHE?

- Particle transport obeys Fick's law of diffusion: $M=-m(\varphi) \nabla \varphi$. Assume m is constant!

Why doubly nonlocal CHE?

- Particle transport obeys Fick's law of diffusion: $M=-m(\varphi) \nabla \varphi$. Assume m is constant!
- Then the nonlocal CHE is equivalent to

$$
\partial_{t} \varphi+A \mu=0, \mu=B \varphi+F^{\prime}(\varphi), \text { in } \Omega \times(0, \infty)
$$

where

$$
\begin{aligned}
A & =-\Delta_{N}(\text { The Neumann Laplacian on } \Omega) \\
B \varphi & =a(x) \varphi-J * \varphi=\int_{\Omega} J(x-y)(\varphi(x)-\varphi(y)) d y
\end{aligned}
$$

provided that $J \in L_{l o c}^{1}$ and symmetric.

Why doubly nonlocal CHE?

- Particle transport obeys Fick's law of diffusion: $M=-m(\varphi) \nabla \varphi$. Assume m is constant!
- Then the nonlocal CHE is equivalent to

$$
\partial_{t} \varphi+A \mu=0, \mu=B \varphi+F^{\prime}(\varphi), \text { in } \Omega \times(0, \infty)
$$

where

$$
\begin{aligned}
A & =-\Delta_{N}(\text { The Neumann Laplacian on } \Omega) \\
B \varphi & =a(x) \varphi-J * \varphi=\int_{\Omega} J(x-y)(\varphi(x)-\varphi(y)) d y
\end{aligned}
$$

provided that $J \in L_{\text {loc }}^{1}$ and symmetric.

- Multiscale heterogeneous environment Ω : Neumana-Tartakovsky 2009, Vlahos-Isliker-Kominis-Hizonidis 2008;
anamolous (nonlocal) transport law replaces local one!

Why doubly nonlocal CHE?

- The classical conservation law $\partial_{t} \varphi+\operatorname{div}(M)=0$ must be replaced by a nonlocal formulation for mass transport:

$$
\partial_{t} \varphi+A \mu=0
$$

where

$$
\begin{aligned}
A \mu & =\text { P.V. } \int_{\Omega} K(x-y)(\mu(y)-\mu(x)) d y \\
& \stackrel{\text { def }}{=} \lim _{\varepsilon \rightarrow 0^{+}} \int_{\Omega \backslash B_{\varepsilon}(x)} K(x-y)(\mu(y)-\mu(x)) d y .
\end{aligned}
$$

Why doubly nonlocal CHE?

- The classical conservation law $\partial_{t} \varphi+\operatorname{div}(M)=0$ must be replaced by a nonlocal formulation for mass transport:

$$
\partial_{t} \varphi+A \mu=0
$$

where

$$
\begin{aligned}
A \mu & =\mathrm{P} . \mathrm{V} \cdot \int_{\Omega} K(x-y)(\mu(y)-\mu(x)) d y \\
& \stackrel{\text { def }}{=} \lim _{\varepsilon \rightarrow 0^{+}} \int_{\Omega \backslash B_{\varepsilon}(x)} K(x-y)(\mu(y)-\mu(x)) d y
\end{aligned}
$$

- Contrast to previous analysis: μ is only measurable (with no assumed a priori regularity!).

Why doubly nonlocal CHE?

- The classical conservation law $\partial_{t} \varphi+\operatorname{div}(M)=0$ must be replaced by a nonlocal formulation for mass transport:

$$
\partial_{t} \varphi+A \mu=0
$$

where

$$
\begin{aligned}
A \mu & =\mathrm{P} . \mathrm{V} \cdot \int_{\Omega} K(x-y)(\mu(y)-\mu(x)) d y \\
& \stackrel{\text { def }}{=} \lim _{\varepsilon \rightarrow 0^{+}} \int_{\Omega \backslash B_{\varepsilon}(x)} K(x-y)(\mu(y)-\mu(x)) d y
\end{aligned}
$$

- Contrast to previous analysis: μ is only measurable (with no assumed a priori regularity!).
- K encodes the physical properties of the environment Ω in a manner in which mass is being transported throughout Ω.

The doubly nonlocal CHE

- The doubly nonlocal CHE reads (more generally) as

$$
\partial_{t} \varphi+A \mu=0, \mu=B \varphi+F^{\prime}(\varphi) \text { in } \Omega \times(0, \infty)
$$

where

$$
\begin{aligned}
& A \mu=\text { P.V. } \int_{\Omega} K(x-y)(\mu(y)-\mu(x)) d y \\
& B \varphi=\text { P.V. } \int_{\Omega} J(x-y)(\varphi(y)-\varphi(x)) d y
\end{aligned}
$$

The doubly nonlocal CHE

- The doubly nonlocal CHE reads (more generally) as

$$
\partial_{t} \varphi+A \mu=0, \mu=B \varphi+F^{\prime}(\varphi) \text { in } \Omega \times(0, \infty)
$$

where

$$
\begin{aligned}
& A \mu=\mathrm{P} . \mathrm{V} \cdot \int_{\Omega} K(x-y)(\mu(y)-\mu(x)) d y \\
& B \varphi=\mathrm{P.V} \cdot \int_{\Omega} J(x-y)(\varphi(y)-\varphi(x)) d y
\end{aligned}
$$

- $K(x, y)=\rho(|x-y|)$ and $J(x)=J(-x)$, we classify:

The doubly nonlocal CHE

- The doubly nonlocal CHE reads (more generally) as

$$
\partial_{t} \varphi+A \mu=0, \mu=B \varphi+F^{\prime}(\varphi) \text { in } \Omega \times(0, \infty)
$$

where

$$
\begin{aligned}
& A \mu=\text { P.V. } \int_{\Omega} K(x-y)(\mu(y)-\mu(x)) d y \\
& B \varphi=P . V . \int_{\Omega} J(x-y)(\varphi(y)-\varphi(x)) d y
\end{aligned}
$$

- $K(x, y)=\rho(|x-y|)$ and $J(x)=J(-x)$, we classify:
(1) the strong-to-weak interaction case: $\rho \notin L_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right), J \in L_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right)$;

The doubly nonlocal CHE

- The doubly nonlocal CHE reads (more generally) as

$$
\partial_{t} \varphi+A \mu=0, \mu=B \varphi+F^{\prime}(\varphi) \text { in } \Omega \times(0, \infty)
$$

where

$$
\begin{aligned}
& A \mu=\mathrm{P} . \mathrm{V} . \int_{\Omega} K(x-y)(\mu(y)-\mu(x)) d y \\
& B \varphi=\mathrm{P.V} \cdot \int_{\Omega} J(x-y)(\varphi(y)-\varphi(x)) d y
\end{aligned}
$$

- $K(x, y)=\rho(|x-y|)$ and $J(x)=J(-x)$, we classify:
(1) the strong-to-weak interaction case: $\rho \notin L_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right), J \in L_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right)$;
(2) the weak-to-weak interaction case: $\rho, J \in L_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right)$;

The doubly nonlocal CHE

- The doubly nonlocal CHE reads (more generally) as

$$
\partial_{t} \varphi+A \mu=0, \mu=B \varphi+F^{\prime}(\varphi) \text { in } \Omega \times(0, \infty)
$$

where

$$
\begin{aligned}
& A \mu=\mathrm{P} . \mathrm{V} . \int_{\Omega} K(x-y)(\mu(y)-\mu(x)) d y \\
& B \varphi=\mathrm{P.V} \cdot \int_{\Omega} J(x-y)(\varphi(y)-\varphi(x)) d y
\end{aligned}
$$

- $K(x, y)=\rho(|x-y|)$ and $J(x)=J(-x)$, we classify:
(1) the strong-to-weak interaction case: $\rho \notin L_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right), J \in L_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right)$;
(2) the weak-to-weak interaction case: $\rho, J \in L_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right)$;
(3) The weak-to-strong interaction case: $\rho \in L_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right), J \notin L_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right)$;

The doubly nonlocal CHE

- The doubly nonlocal CHE reads (more generally) as

$$
\partial_{t} \varphi+A \mu=0, \mu=B \varphi+F^{\prime}(\varphi) \text { in } \Omega \times(0, \infty)
$$

where

$$
\begin{aligned}
& A \mu=\mathrm{P} . \mathrm{V} . \int_{\Omega} K(x-y)(\mu(y)-\mu(x)) d y \\
& B \varphi=\mathrm{P.V} \cdot \int_{\Omega} J(x-y)(\varphi(y)-\varphi(x)) d y
\end{aligned}
$$

- $K(x, y)=\rho(|x-y|)$ and $J(x)=J(-x)$, we classify:
(1) the strong-to-weak interaction case: $\rho \notin L_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right), J \in L_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right)$;
(2) the weak-to-weak interaction case: $\rho, J \in L_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right)$;
(3) The weak-to-strong interaction case: $\rho \in L_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right), J \notin L_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right)$;
(9) The strong-to-strong interaction case: $\rho, J \notin L_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right)$.

Part 1: The strong-to-strong interaction case

- Fix $s \in(0,1)$, and set

$$
\mathcal{L}(\Omega):=\left\{u: \Omega \rightarrow \mathbb{R} \text { measurable, } \int_{\Omega} \frac{|u(x)|}{(1+|x|)^{d+2 s}} d x<\infty\right\}
$$

Part 1: The strong-to-strong interaction case

- Fix $s \in(0,1)$, and set

$$
\mathcal{L}(\Omega):=\left\{u: \Omega \rightarrow \mathbb{R} \text { measurable, } \int_{\Omega} \frac{|u(x)|}{(1+|x|)^{d+2 s}} d x<\infty\right\}
$$

- Regional fractional Laplacian $(-\Delta)_{\Omega}^{s}$:

$$
(-\Delta)_{\Omega}^{s} u(x)=\text { P.V. } C_{d, s} \int_{\Omega} \frac{(u(x)-u(y))}{|x-y|^{d+2 s}} d y, x \in \Omega, u \in \mathcal{L}(\Omega)
$$

Part 1: The strong-to-strong interaction case

- Fix $s \in(0,1)$, and set

$$
\mathcal{L}(\Omega):=\left\{u: \Omega \rightarrow \mathbb{R} \text { measurable, } \int_{\Omega} \frac{|u(x)|}{(1+|x|)^{d+2 s}} d x<\infty\right\} \text {. }
$$

- Regional fractional Laplacian $(-\Delta)_{\Omega}^{s}$:

$$
(-\Delta)_{\Omega}^{s} u(x)=\text { P.V. } C_{d, s} \int_{\Omega} \frac{(u(x)-u(y))}{|x-y|^{d+2 s}} d y, x \in \Omega, u \in \mathcal{L}(\Omega)
$$

- Possible boundary conditions: Neumann BCs of "fractional" type as well as Dirichlet BCs (for the sake of presentation):

$$
u=0 \text { on } \partial \Omega
$$

Part 1: The strong-to-strong interaction case

- Fix $s \in(0,1)$, and set

$$
\mathcal{L}(\Omega):=\left\{u: \Omega \rightarrow \mathbb{R} \text { measurable, } \int_{\Omega} \frac{|u(x)|}{(1+|x|)^{d+2 s}} d x<\infty\right\}
$$

- Regional fractional Laplacian $(-\Delta)_{\Omega}^{s}$:

$$
(-\Delta)_{\Omega}^{s} u(x)=\text { P.V. } C_{d, s} \int_{\Omega} \frac{(u(x)-u(y))}{|x-y|^{d+2 s}} d y, x \in \Omega, u \in \mathcal{L}(\Omega)
$$

- Possible boundary conditions: Neumann BCs of "fractional" type as well as Dirichlet BCs (for the sake of presentation):

$$
u=0 \text { on } \partial \Omega
$$

- $(-\Delta)_{\Omega, D}^{s}=$ realization of $(-\Delta)_{\Omega}^{s}$ on $L^{2}(\Omega)$ with the Dirichlet boundary condition. We have

$$
\begin{aligned}
\operatorname{Dom}\left((-\Delta)_{\Omega, D}^{s}\right) & =\left\{u \in W_{0}^{s, 2}(\Omega),(-\Delta)_{\Omega}^{s} u \in L^{2}(\Omega)\right\} \\
(-\Delta)_{\Omega, D}^{s} u & =(-\Delta)_{\Omega}^{s} u
\end{aligned}
$$

Part 1: The strong-to-strong interaction case

- Here, $W_{0}^{s, 2}(\Omega)=\overline{\mathcal{D}(\Omega)} W^{W^{s, 2}}$ with

$$
\begin{aligned}
\|u\|_{W^{s, 2}}^{2} & =\frac{C_{d, s}}{2} \int_{\Omega} \int_{\Omega} \frac{|u(x)-u(y)|^{2}}{|x-y|^{d+2 s}} d x d y+\int_{\Omega}|u(x)|^{2} d x \\
& =: \mathcal{E}_{A}(u, u)+\|u\|_{L^{2}(\Omega)}^{2}
\end{aligned}
$$

Part 1: The strong-to-strong interaction case

- Here, $W_{0}^{s, 2}(\Omega)=\overline{\mathcal{D}(\Omega)} W^{W^{s, 2}}$ with

$$
\begin{aligned}
\|u\|_{W^{s, 2}}^{2} & =\frac{C_{d, s}}{2} \int_{\Omega} \int_{\Omega} \frac{|u(x)-u(y)|^{2}}{|x-y|^{d+2 s}} d x d y+\int_{\Omega}|u(x)|^{2} d x \\
& =: \mathcal{E}_{A}(u, u)+\|u\|_{L^{2}(\Omega)}^{2} .
\end{aligned}
$$

- Note $W_{0}^{s, 2}(\Omega) \subset L^{2 q}(\Omega)$ with
$q=\frac{d}{d-2 s}$ if $d>2 s$ and any $q \in(1, \infty)$ if $d \leq 2 s$, and

$$
W_{0}^{s, 2}(\Omega) \stackrel{c}{\hookrightarrow} L^{2}(\Omega)
$$

Part 1: The strong-to-strong interaction case

- Here, $W_{0}^{s, 2}(\Omega)=\overline{\mathcal{D}(\Omega)}{ }^{W^{s, 2}}$ with

$$
\begin{aligned}
\|u\|_{W^{s, 2}}^{2} & =\frac{C_{d, s}}{2} \int_{\Omega} \int_{\Omega} \frac{|u(x)-u(y)|^{2}}{|x-y|^{d+2 s}} d x d y+\int_{\Omega}|u(x)|^{2} d x \\
& =: \mathcal{E}_{A}(u, u)+\|u\|_{L^{2}(\Omega)}^{2}
\end{aligned}
$$

- Note $W_{0}^{s, 2}(\Omega) \subset L^{2 q}(\Omega)$ with
$q=\frac{d}{d-2 s}$ if $d>2 s$ and any $q \in(1, \infty)$ if $d \leq 2 s$, and

$$
W_{0}^{s, 2}(\Omega) \stackrel{c}{\hookrightarrow} L^{2}(\Omega) .
$$

- It can be proven that

$$
\operatorname{Dom}\left((-\Delta)_{\Omega, D}^{s}\right) \subset L^{\infty}(\Omega) \text { if } s>\frac{d}{4}
$$

Part 1: The strong-to-strong interaction case

- Recall the doubly nonlocal CHE in abstract form reads

$$
\partial_{t} \varphi+A \mu=0, \mu=B \varphi+F^{\prime}(\varphi) \text { in } \Omega \times(0, \infty)
$$

Part 1: The strong-to-strong interaction case

- Recall the doubly nonlocal CHE in abstract form reads

$$
\partial_{t} \varphi+A \mu=0, \mu=B \varphi+F^{\prime}(\varphi) \text { in } \Omega \times(0, \infty)
$$

- F is a polynomial potential, i.e., $F(r)=\theta r^{4}-\theta_{c} r^{2}$.

Table:

Model	Classical CHE	Doubly nonlocal CHE, case (4)
A	$-\Delta_{\Omega, N}$	$(-\Delta)_{\Omega, D}^{s_{1}}, s_{1} \in(0,1)$
B	$-\Delta_{\Omega, N}$	$(-\Delta)_{\Omega, D}^{s_{2}}, s_{2} \in(0,1)$

Table:

Model	CHE: anamolous transport	CHE: nonlocal strong energy
A	$(-\Delta)_{\Omega, D}^{s}, s \in(0,1)$	$-\Delta_{\Omega, N}$
B	$-\Delta_{\Omega, N}$	$(-\Delta)_{\Omega, D}^{s}, s \in(0,1)$

Part 1: The strong-to-strong interaction case

- Our approach:

Part 1: The strong-to-strong interaction case

- Our approach:
(1) Concept of (energy) bilinear forms and associated diffusion operators A, B.

Part 1: The strong-to-strong interaction case

- Our approach:
(1) Concept of (energy) bilinear forms and associated diffusion operators A, B.
(2) Ω need not be smooth (for instance, Ω is a bounded domain with Lipschitz continuous boundary).

Part 1: The strong-to-strong interaction case

- Our approach:
(1) Concept of (energy) bilinear forms and associated diffusion operators A, B.
(2) Ω need not be smooth (for instance, Ω is a bounded domain with Lipschitz continuous boundary).
(3) Examples: A, B may be associated with classical operators (such as $\left.\Delta_{\Omega, D}, \Delta_{\Omega, N}\right)$ or nonlocal ones!

Part 1: The strong-to-strong interaction case

- Our approach:
(1) Concept of (energy) bilinear forms and associated diffusion operators A, B.
(2) Ω need not be smooth (for instance, Ω is a bounded domain with Lipschitz continuous boundary).
(3) Examples: A, B may be associated with classical operators (such as $\left.\Delta_{\Omega, D}, \Delta_{\Omega, N}\right)$ or nonlocal ones!
- Results:

Part 1: The strong-to-strong interaction case

- Our approach:
(1) Concept of (energy) bilinear forms and associated diffusion operators A, B.
(2) Ω need not be smooth (for instance, Ω is a bounded domain with Lipschitz continuous boundary).
(3) Examples: A, B may be associated with classical operators (such as $\left.\Delta_{\Omega, D}, \Delta_{\Omega, N}\right)$ or nonlocal ones!
- Results:
(1) Well-posedness of weak and strong solutions;

Part 1: The strong-to-strong interaction case

- Our approach:
(1) Concept of (energy) bilinear forms and associated diffusion operators A, B.
(2) Ω need not be smooth (for instance, Ω is a bounded domain with Lipschitz continuous boundary).
(3) Examples: A, B may be associated with classical operators (such as $\left.\Delta_{\Omega, D}, \Delta_{\Omega, N}\right)$ or nonlocal ones!
- Results:
(1) Well-posedness of weak and strong solutions;
(2) Regularity and long-time behavior in terms of finite dimensional global attractors.

Part 1: The strong-to-strong interaction case

- For simplicity, let $A:=(-\Delta)_{\Omega, D}^{\prime}, B:=(-\Delta)_{\Omega, D}^{s}$, for $s, I \in(0,1)$.

Part 1: The strong-to-strong interaction case

- For simplicity, let $A:=(-\Delta)_{\Omega, D}^{\prime}, B:=(-\Delta)_{\Omega, D}^{s}$, for $s, I \in(0,1)$.
- The elliptic problem:

$$
B u(x)+f(u(x))=h(x), x \in \Omega
$$

where $h \in L^{p}(\Omega)$ for some $p>1$. Here, $f=F^{\prime} \in C^{1}(\mathbb{R})$ is a nonlinear function which satisfies

$$
f(t) t \geq \alpha_{0} t^{2}-\alpha_{1}, f^{\prime}(t) \geq-\alpha_{2} . \text { for all } t \in \mathbb{R},|t| \geq t_{0}
$$

Here $\alpha_{0}>0, \alpha_{1}, \alpha_{2} \geq 0 ; t_{0}>0$ is large enough.

Part 1: The strong-to-strong interaction case

- For simplicity, let $A:=(-\Delta)_{\Omega, D}^{\prime}, B:=(-\Delta)_{\Omega, D}^{s}$, for $s, I \in(0,1)$.
- The elliptic problem:

$$
B u(x)+f(u(x))=h(x), x \in \Omega
$$

where $h \in L^{p}(\Omega)$ for some $p>1$. Here, $f=F^{\prime} \in C^{1}(\mathbb{R})$ is a nonlinear function which satisfies

$$
f(t) t \geq \alpha_{0} t^{2}-\alpha_{1}, f^{\prime}(t) \geq-\alpha_{2} . \text { for all } t \in \mathbb{R},|t| \geq t_{0}
$$

Here $\alpha_{0}>0, \alpha_{1}, \alpha_{2} \geq 0 ; t_{0}>0$ is large enough.

- We say that u is a bounded generalized solution if $u \in W_{0}^{s, 2}(\Omega) \cap L^{\infty}(\Omega)$ and

$$
\mathcal{E}_{B}(u, v)+\int_{\Omega} f(u(x)) v(x) d x=\int_{\Omega} h(x) v(x) d x
$$

for all $v \in W_{0}^{s, 2}(\Omega)$.

Part 1: The strong-to-strong interaction case

Theorem

Under the above assumptions on f, there is at least one bounded solution provided that $h \in L^{p}(\Omega)$ with $p>\frac{d}{2 s}$. Moreover, we have

$$
\|u\|_{L^{\infty}(\Omega)} \leq C\left(1+\|h\|_{L^{p}(\Omega)}\right)
$$

for some constant $C>0$ independent of u and h.

Corollary

Under the same assumptions, if $h \in L^{p}(\Omega) \cap L^{2}(\Omega)$, then $u \in D(B) \cap L^{\infty}(\Omega)$ such that

$$
\|B u\|_{L^{2}(\Omega)} \leq Q\left(1+\|h\|_{L^{p}(\Omega) \cap L^{2}(\Omega)}\right)
$$

for some function $Q>0$ independent of u and h.

Strong solutions

- Energy space

$$
Z=\left\{\left(u_{0}, \mu_{0}\right) \in D(B) \times W_{0}^{\prime, 2}(\Omega)\right\}, D(B)=D\left((-\Delta)_{\Omega, D}^{s}\right)
$$

with norm (with respect to the pair $\left(u_{0}, \mu_{0}\right)$),

$$
\left\|u_{0}\right\|_{Z}^{2}=\left\|u_{0}\right\|_{D(B)}^{2}+\left\|\mu_{0}\right\|_{W^{\prime, 2}}^{2},
$$

where μ_{0} is computed via the equation

$$
\mu_{0}=B u_{0}+f\left(u_{0}\right) \text { in } \Omega .
$$

Strong solutions

Definition

Let $0<T<+\infty$ be given. We say u is a strong solution if u, μ satisfy

$$
\begin{aligned}
& u \in L^{\infty}\left(0, T ; D(B) \cap L^{\infty}(\Omega)\right), \partial_{t} u \in L^{2}\left(0, T ; W_{0}^{s, 2}(\Omega)\right) \\
& \quad \mu \in L^{\infty}\left(0, T ; W_{0}^{\prime, 2}(\Omega)\right) \cap L^{2}(0, T ; D(A))
\end{aligned}
$$

In particular, for the strong solution we have $\partial_{t} u=-A \mu$, a.e. in $\Omega \times(0, T)$ and $\mu=B u+f(u)$, a.e. in $\Omega \times(0, T)$.

Strong solutions

(1) Regularized version/problem for $(u, \mu)=\left(u_{\epsilon, \alpha}, \mu_{\epsilon, \alpha}\right)$:

$$
\partial_{t} u=-A \mu, \mu=\alpha \partial_{t} u+B u+f_{\varepsilon}(u),
$$

where $\left\{f_{\epsilon}=F_{\epsilon}^{\prime}\right\}$ is such that $f_{\epsilon} \rightarrow f$ uniformly on compact intervals of \mathbb{R}, with the property that $\left|f_{\epsilon}^{\prime}(s)\right| \leq c_{f, \epsilon}$.

Strong solutions

(1) Regularized version/problem for $(u, \mu)=\left(u_{\epsilon, \alpha}, \mu_{\epsilon, \alpha}\right)$:

$$
\partial_{t} u=-A \mu, \mu=\alpha \partial_{t} u+B u+f_{\varepsilon}(u),
$$

where $\left\{f_{\epsilon}=F_{\epsilon}^{\prime}\right\}$ is such that $f_{\epsilon} \rightarrow f$ uniformly on compact intervals of \mathbb{R}, with the property that $\left|f_{\epsilon}^{\prime}(s)\right| \leq c_{f, \epsilon}$.
(2) Existence of a strong solution to ($\mathrm{P}_{\epsilon, \alpha}$) by a backward (finite-difference) Euler scheme.

Strong solutions

(1) Regularized version/problem for $(u, \mu)=\left(u_{\epsilon, \alpha}, \mu_{\epsilon, \alpha}\right)$:

$$
\partial_{t} u=-A \mu, \mu=\alpha \partial_{t} u+B u+f_{\varepsilon}(u), \quad\left(\left(\mathrm{P}_{\epsilon, \alpha}\right)\right)
$$

where $\left\{f_{\epsilon}=F_{\epsilon}^{\prime}\right\}$ is such that $f_{\epsilon} \rightarrow f$ uniformly on compact intervals of \mathbb{R}, with the property that $\left|f_{\epsilon}^{\prime}(s)\right| \leq c_{f, \epsilon}$.
(2) Existence of a strong solution to ($\mathrm{P}_{\epsilon, \alpha}$) by a backward (finite-difference) Euler scheme.
(3) Derive uniform estimates and pass to the limit as $(\epsilon, \alpha) \rightarrow(0,0)$.

Strong solutions

(1) Regularized version/problem for $(u, \mu)=\left(u_{\epsilon, \alpha}, \mu_{\epsilon, \alpha}\right)$:

$$
\partial_{t} u=-A \mu, \mu=\alpha \partial_{t} u+B u+f_{\varepsilon}(u), \quad\left(\left(\mathrm{P}_{\epsilon, \alpha}\right)\right)
$$

where $\left\{f_{\epsilon}=F_{\epsilon}^{\prime}\right\}$ is such that $f_{\epsilon} \rightarrow f$ uniformly on compact intervals of \mathbb{R}, with the property that $\left|f_{\epsilon}^{\prime}(s)\right| \leq c_{f, \epsilon}$.
(2) Existence of a strong solution to ($\mathrm{P}_{\epsilon, \alpha}$) by a backward (finite-difference) Euler scheme.
(3) Derive uniform estimates and pass to the limit as $(\epsilon, \alpha) \rightarrow(0,0)$.
(9) Main assumption on $F \in C^{2}(\mathbb{R}),(\mathrm{Hf}-1): \lim _{|s| \rightarrow \infty} F(s)=\infty$ and for some $c_{F}, c_{1}>0, c_{2} \geq 0$,

$$
F^{\prime}(s) s \geq c_{1} s^{2}-c_{2} \text { and } f^{\prime}(s)=F^{\prime \prime}(s) \geq-c_{F}, \text { for all } s \in \mathbb{R}
$$

Strong solutions

Theorem

Let $\left(u_{0}, \mu_{0}\right) \in Z$ for some $s>\frac{d}{4}$. Then there exists at least one strong solution in the sense of definition.

Weak solutions

- Weak energy space

$$
Y=\left\{u \in W_{0}^{s, 2}(\Omega): F(u) \in L^{1}(\Omega)\right\}
$$

with the following metric

$$
d\left(u_{1}, u_{2}\right)=\left\|u_{1}-u_{2}\right\|_{W_{0}^{s, 2}}+\left|\int_{\Omega} F\left(u_{1}\right)-F\left(u_{2}\right) d x\right|^{1 / 2} .
$$

- Two more assumptions on F :
(Hf-2) There exists a constant $c_{f}>0$ and $p \in(1,2]$ such that

$$
|f(s)|^{p} \leq c_{f}(|F(s)|+1), \text { for all } s \in \mathbb{R}
$$

(Hf-3) There exist $C_{1}>0, C_{2} \geq 0$ and $p \in(1,2]$ such that

$$
F(s) \geq C_{1}|s|^{p /(p-1)}-C_{2}, \quad \text { for all } s \in \mathbb{R}
$$

- $F(s)=\theta s^{4}-\theta_{c} s^{2}$ satisfies (Hf-1)-(Hf-3) with $p=4 / 3$ (and so $\bar{p}:=p /(p-1)=4)$.

Weak solutions

- Weak solution: $u_{0} \in Y$ and u satisfies

$$
\begin{aligned}
u & \in L^{\infty}(0, T ; Y), \partial_{t} u \in L^{2}\left(0, T ; W_{0}^{-l, 2}(\Omega)\right) \\
\mu & \in L^{2}\left(0, T ; W_{0}^{I, 2}(\Omega)\right), \\
F(u) & \in L^{\infty}\left(0, T ; L^{1}(\Omega)\right), f(u) \in L^{\infty}\left(0, T ; L^{p}(\Omega)\right)
\end{aligned}
$$

Definition

- for every $v \in W_{0}^{s, 2}(\Omega) \cap L^{\bar{p}}(\Omega), \omega \in W_{0}^{1,2}(\Omega)$, a.e. $t \in(0, T)$ we have

$$
\begin{aligned}
& \left\langle\partial_{t} u(t), \omega\right\rangle+\mathcal{E}_{A}(\mu(t), \omega)=0 \\
& \mathcal{E}_{B}(u(t), v)+\langle f(u(t)), v\rangle=(\mu(t), v)
\end{aligned}
$$

- We have $u(0)=u_{0}$ in Ω.

Weak solutions

- Energy identity: test with $\omega=\mu$ and $v=\partial_{t} u$ in $L^{2}(\Omega)$ and add the resulting equations:

$$
\frac{d}{d t}\left(\mathcal{E}_{B}(u(t), u(t))+\int_{\Omega} F(u(t)) d x\right)+\mathcal{E}_{A}(\mu(t), \mu(t))=0
$$

Weak solutions

- Energy identity: test with $\omega=\mu$ and $v=\partial_{t} u$ in $L^{2}(\Omega)$ and add the resulting equations:

$$
\frac{d}{d t}\left(\mathcal{E}_{B}(u(t), u(t))+\int_{\Omega} F(u(t)) d x\right)+\mathcal{E}_{A}(\mu(t), \mu(t))=0
$$

- It is justifiable for strong solutions u_{n}, with $\left(u_{0 n}, \mu_{0 n}\right) \in Z$. Approximate $u_{0} \in Y$ by a sequence $\left(u_{0 n}, \mu_{0 n}\right) \in Z$.

Weak solutions

- Energy identity: test with $\omega=\mu$ and $v=\partial_{t} u$ in $L^{2}(\Omega)$ and add the resulting equations:

$$
\frac{d}{d t}\left(\mathcal{E}_{B}(u(t), u(t))+\int_{\Omega} F(u(t)) d x\right)+\mathcal{E}_{A}(\mu(t), \mu(t))=0
$$

- It is justifiable for strong solutions u_{n}, with $\left(u_{0 n}, \mu_{0 n}\right) \in Z$. Approximate $u_{0} \in Y$ by a sequence $\left(u_{0 n}, \mu_{0 n}\right) \in Z$.
- Use the energy identity to control the solutions uniformly with respect to $n \rightarrow \infty$.

Weak solutions

- Energy identity: test with $\omega=\mu$ and $v=\partial_{t} u$ in $L^{2}(\Omega)$ and add the resulting equations:

$$
\frac{d}{d t}\left(\mathcal{E}_{B}(u(t), u(t))+\int_{\Omega} F(u(t)) d x\right)+\mathcal{E}_{A}(\mu(t), \mu(t))=0
$$

- It is justifiable for strong solutions u_{n}, with $\left(u_{0 n}, \mu_{0 n}\right) \in Z$. Approximate $u_{0} \in Y$ by a sequence $\left(u_{0 n}, \mu_{0 n}\right) \in Z$.
- Use the energy identity to control the solutions uniformly with respect to $n \rightarrow \infty$.
- Pass to the limit in n using the uniform (weak) energy bounds.

Weak solutions

Theorem

Let F satisfy the assumptions (Hf-1), (Hf-2), (Hf-3) and assume $s>\frac{d}{4}$. For every initial datum $u_{0} \in Y$, there exists at least one weak solution in the sense of the previous definition. Moreover,

$$
u \in L^{\infty}\left(0, T ; L^{\bar{p}}(\Omega)\right), \text { for any } T>0
$$

Problem

It may be possible to remove the condition $s>\frac{d}{4}$ (recall that $\left.B=(-\Delta)_{\Omega, D}^{s}, s \in(0,1)\right)$ by using further perturbation arguments!

References: Part 1 (The strong-to-strong interaction case)

嗇 C.G. Gal, On the strong-to-strong interaction case for doubly nonlocal Cahn-Hilliard equations. Discrete Contin. Dyn. Syst. 37 (2017), 131-167.

目 C.G. Gal, Nonlocal Cahn-Hilliard equations with fractional dynamic boundary conditions. European J. of Applied Mathematics (2017), 53 pages, doi: 10.1017/S0956792516000504.

Part 2: The strong-to-weak interaction case

- The doubly nonlocal CHE reads (more generally) as

$$
\partial_{t} \varphi+A \mu=0, \mu=B \varphi+F^{\prime}(\varphi) \text { in } \Omega \times(0, \infty)
$$

where

$$
\begin{aligned}
& A \mu=\mathrm{P} . \mathrm{V} . \int_{\Omega} K(x-y)(\mu(y)-\mu(x)) d y \\
& B \varphi=\mathrm{P} . \mathrm{V} \cdot \int_{\Omega} J(x-y)(\varphi(y)-\varphi(x)) d y
\end{aligned}
$$

Part 2: The strong-to-weak interaction case

- The doubly nonlocal CHE reads (more generally) as

$$
\partial_{t} \varphi+A \mu=0, \mu=B \varphi+F^{\prime}(\varphi) \text { in } \Omega \times(0, \infty)
$$

where

$$
\begin{aligned}
& A \mu=\mathrm{P} . \mathrm{V} \cdot \int_{\Omega} K(x-y)(\mu(y)-\mu(x)) d y \\
& B \varphi=\mathrm{P.V} \cdot \int_{\Omega} J(x-y)(\varphi(y)-\varphi(x)) d y
\end{aligned}
$$

- $K(x, y)=\rho(|x-y|)$ and $J(x)=J(-x)$, we classify:

Part 2: The strong-to-weak interaction case

- The doubly nonlocal CHE reads (more generally) as

$$
\partial_{t} \varphi+A \mu=0, \mu=B \varphi+F^{\prime}(\varphi) \text { in } \Omega \times(0, \infty)
$$

where

$$
\begin{aligned}
& A \mu=\mathrm{P} . \mathrm{V} . \int_{\Omega} K(x-y)(\mu(y)-\mu(x)) d y \\
& B \varphi=\mathrm{P.V} \cdot \int_{\Omega} J(x-y)(\varphi(y)-\varphi(x)) d y
\end{aligned}
$$

- $K(x, y)=\rho(|x-y|)$ and $J(x)=J(-x)$, we classify:
(1) the strong-to-weak interaction case: $\rho \notin L_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right), J \in L_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right)$;

Part 2: The strong-to-weak interaction case

- The doubly nonlocal CHE reads (more generally) as

$$
\partial_{t} \varphi+A \mu=0, \mu=B \varphi+F^{\prime}(\varphi) \text { in } \Omega \times(0, \infty)
$$

where

$$
\begin{aligned}
& A \mu=\mathrm{P} . \mathrm{V} . \int_{\Omega} K(x-y)(\mu(y)-\mu(x)) d y \\
& B \varphi=\mathrm{P} . \mathrm{V} \cdot \int_{\Omega} J(x-y)(\varphi(y)-\varphi(x)) d y
\end{aligned}
$$

- $K(x, y)=\rho(|x-y|)$ and $J(x)=J(-x)$, we classify:
(1) the strong-to-weak interaction case: $\rho \notin L_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right), J \in L_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right)$;
(2) the weak-to-weak interaction case: $\rho, J \in L_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right)$;

Part 2: The strong-to-weak interaction case

- The doubly nonlocal CHE reads (more generally) as

$$
\partial_{t} \varphi+A \mu=0, \mu=B \varphi+F^{\prime}(\varphi) \text { in } \Omega \times(0, \infty)
$$

where

$$
\begin{aligned}
& A \mu=\mathrm{P} . \mathrm{V} . \int_{\Omega} K(x-y)(\mu(y)-\mu(x)) d y \\
& B \varphi=\mathrm{P.V} \cdot \int_{\Omega} J(x-y)(\varphi(y)-\varphi(x)) d y
\end{aligned}
$$

- $K(x, y)=\rho(|x-y|)$ and $J(x)=J(-x)$, we classify:
(1) the strong-to-weak interaction case: $\rho \notin L_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right), J \in L_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right)$;
(2) the weak-to-weak interaction case: $\rho, J \in L_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right)$;
(3) The weak-to-strong interaction case: $\rho \in L_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right), J \notin L_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right)$;

Part 2: The strong-to-weak interaction case

- The doubly nonlocal CHE reads (more generally) as

$$
\partial_{t} \varphi+A \mu=0, \mu=B \varphi+F^{\prime}(\varphi) \text { in } \Omega \times(0, \infty)
$$

where

$$
\begin{aligned}
& A \mu=\mathrm{P} . \mathrm{V} . \int_{\Omega} K(x-y)(\mu(y)-\mu(x)) d y \\
& B \varphi=\mathrm{P.V} \cdot \int_{\Omega} J(x-y)(\varphi(y)-\varphi(x)) d y
\end{aligned}
$$

- $K(x, y)=\rho(|x-y|)$ and $J(x)=J(-x)$, we classify:
(1) the strong-to-weak interaction case: $\rho \notin L_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right), J \in L_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right)$;
(2) the weak-to-weak interaction case: $\rho, J \in L_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right)$;
(3) The weak-to-strong interaction case: $\rho \in L_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right), J \notin L_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right)$;
(9) The strong-to-strong interaction case: $\rho, J \notin L_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right)$.

Part 2: The strong-to-weak interaction case

- Take for simplicity again $A=(-\Delta)_{\Omega, D}^{\prime}$, for $I \in(0,1)$ (namely $\left.\rho(r)=C_{d, I} r^{-2 l-d}\right)$, but if $J \in L_{l o c}^{1}$, we have $B: L^{p}(\Omega) \rightarrow L^{p}(\Omega)$ is bounded.

Part 2: The strong-to-weak interaction case

- Take for simplicity again $A=(-\Delta)_{\Omega, D}^{\prime}$, for $I \in(0,1)$ (namely $\left.\rho(r)=C_{d, I} r^{-2 l-d}\right)$, but if $J \in L_{\text {loc }}^{1}$, we have

$$
B: L^{p}(\Omega) \rightarrow L^{p}(\Omega) \text { is bounded. }
$$

- Indeed, since $B \varphi(x)=(J * \varphi)(x)-a(x) \varphi(x)$ and $a \in L^{\infty}(\Omega)$, by Young convolution theorem $\left(\|J * \varphi\|_{L^{p}} \leq C\|J\|_{L^{1}}\|\varphi\|_{L^{p}}\right.$, for any $p \in[1, \infty]$).

Part 2: The strong-to-weak interaction case

- Take for simplicity again $A=(-\Delta)_{\Omega, D}^{\prime}$, for $I \in(0,1)$ (namely $\left.\rho(r)=C_{d, I} r^{-2 l-d}\right)$, but if $J \in L_{l o c}^{1}$, we have

$$
B: L^{p}(\Omega) \rightarrow L^{p}(\Omega) \text { is bounded. }
$$

- Indeed, since $B \varphi(x)=(J * \varphi)(x)-a(x) \varphi(x)$ and $a \in L^{\infty}(\Omega)$, by Young convolution theorem $\left(\|J * \varphi\|_{L^{p}} \leq C\|J\|_{L^{1}}\|\varphi\|_{L^{p}}\right.$, for any $p \in[1, \infty]$).
- Combining the two interactions in the equation leads to energy terms like

$$
\int_{\Omega} \int_{\Omega} \rho(|x-y|)((J * \varphi)(x)-(J * \varphi)(y))(\varphi(x)-\varphi(y)) d y d x
$$

Part 2: The strong-to-weak interaction case

- Take for simplicity again $A=(-\Delta)_{\Omega, D}^{\prime}$, for $I \in(0,1)$ (namely

$$
\begin{aligned}
& \left.\rho(r)=C_{d, I} r^{-2 l-d}\right) \text {, but if } J \in L_{l o c}^{1} \text {, we have } \\
& B: L^{p}(\Omega) \rightarrow L^{p}(\Omega) \text { is bounded. }
\end{aligned}
$$

- Indeed, since $B \varphi(x)=(J * \varphi)(x)-a(x) \varphi(x)$ and $a \in L^{\infty}(\Omega)$, by Young convolution theorem $\left(\|J * \varphi\|_{L^{p}} \leq C\|J\|_{L^{1}}\|\varphi\|_{L^{p}}\right.$, for any $p \in[1, \infty]$).
- Combining the two interactions in the equation leads to energy terms like

$$
\int_{\Omega} \int_{\Omega} \rho(|x-y|)((J * \varphi)(x)-(J * \varphi)(y))(\varphi(x)-\varphi(y)) d y d x
$$

- Two essential (disjoint) regions of interaction:

Part 2: The strong-to-weak interaction case

- Take for simplicity again $A=(-\Delta)_{\Omega, D}^{\prime}$, for $I \in(0,1)$ (namely

$$
\begin{aligned}
& \left.\rho(r)=C_{d, I} r^{-2 l-d}\right) \text {, but if } J \in L_{l o c}^{1} \text {, we have } \\
& B: L^{p}(\Omega) \rightarrow L^{p}(\Omega) \text { is bounded. }
\end{aligned}
$$

- Indeed, since $B \varphi(x)=(J * \varphi)(x)-a(x) \varphi(x)$ and $a \in L^{\infty}(\Omega)$, by Young convolution theorem $\left(\|J * \varphi\|_{L^{p}} \leq C\|J\|_{L^{1}}\|\varphi\|_{L^{p}}\right.$, for any $p \in[1, \infty])$.
- Combining the two interactions in the equation leads to energy terms like

$$
\int_{\Omega} \int_{\Omega} \rho(|x-y|)((J * \varphi)(x)-(J * \varphi)(y))(\varphi(x)-\varphi(y)) d y d x
$$

- Two essential (disjoint) regions of interaction:
(1) In $\{(x, y) \in \Omega \times \Omega: \rho(|x-y|) \leq 1\}, \rho(r)=C_{d, I} r^{-2 I-d}$ has only a weak effect on differences.

Part 2: The strong-to-weak interaction case

- Take for simplicity again $A=(-\Delta)_{\Omega, D}^{\prime}$, for $I \in(0,1)$ (namely $\left.\rho(r)=C_{d, I} r^{-2 l-d}\right)$, but if $J \in L_{\text {loc }}^{1}$, we have

$$
B: L^{p}(\Omega) \rightarrow L^{p}(\Omega) \text { is bounded. }
$$

- Indeed, since $B \varphi(x)=(J * \varphi)(x)-a(x) \varphi(x)$ and $a \in L^{\infty}(\Omega)$, by Young convolution theorem $\left(\|J * \varphi\|_{L^{p}} \leq C\|J\|_{L^{1}}\|\varphi\|_{L^{p}}\right.$, for any $p \in[1, \infty])$.
- Combining the two interactions in the equation leads to energy terms like

$$
\int_{\Omega} \int_{\Omega} \rho(|x-y|)((J * \varphi)(x)-(J * \varphi)(y))(\varphi(x)-\varphi(y)) d y d x
$$

- Two essential (disjoint) regions of interaction:
(1) In $\{(x, y) \in \Omega \times \Omega: \rho(|x-y|) \leq 1\}, \rho(r)=C_{d, I} r^{-2 I-d}$ has only a weak effect on differences.
(2) In $\{(x, y) \in \Omega \times \Omega: \rho(|x-y|) \geq 1\}, \rho(r)=C_{d, I} r^{-2 \mid-d}$ has a dominanting effect.

Part 2: The energy identity and estimates

Definition

(1) Setting $b(x, \varphi):=a(x) \varphi+F^{\prime}(\varphi)$, then for every $\psi \in W_{0}^{I, 2}(\Omega)$, a.e. $t \in(0, T)$ we have

$$
\begin{aligned}
& \left\langle\varphi_{t}, \psi\right\rangle+\mathcal{E}_{A}(\mu, \psi)=0 \\
& \mu=b(x, \varphi)-J * \varphi \text { a.e. in } \Omega
\end{aligned}
$$

- Use proper test functions ψ to produce meaningful energy estimates!

Part 2: The energy identity and estimates

Definition

(1) Setting $b(x, \varphi):=a(x) \varphi+F^{\prime}(\varphi)$, then for every $\psi \in W_{0}^{I, 2}(\Omega)$, a.e. $t \in(0, T)$ we have

$$
\begin{aligned}
& \left\langle\varphi_{t}, \psi\right\rangle+\mathcal{E}_{A}(\mu, \psi)=0 \\
& \mu=b(x, \varphi)-J * \varphi \text { a.e. in } \Omega
\end{aligned}
$$

- Use proper test functions ψ to produce meaningful energy estimates!
(1) Choose $\psi=\mu$ and test the second equation by $\partial_{t} \varphi$:

$$
\begin{aligned}
0 & =\frac{d}{d t}\left(\frac{1}{4} \int_{\Omega \times \Omega} J(x-y)|\varphi(x)-\varphi(y)|^{2} d x d y+\int_{\Omega} F(\varphi) d x\right) \\
& +\mathcal{E}_{A}(\mu, \mu)
\end{aligned}
$$

where

$$
\mathcal{E}_{A}(\mu, \mu)=\frac{C_{d, l}}{2} \int_{\Omega} \int_{\Omega} \frac{|u(x)-u(y)|^{2}}{|x-y|^{d+2 l}} d x d y
$$

Part 2: The energy identity and estimates

Assumptions on the potential F (Think of $F^{\prime}=f$ as a polynomial of arbitrary growth).

- There exist $c_{1}>0, c_{2} \geq 0$ and $p \in(1,2]$ such that

$$
\left|F^{\prime}(s)\right|^{p} \leq c_{1}|F(s)|+c_{2}, \quad \forall s \in \mathbb{R}
$$

- Bounds on $(0, T)$ with no sign assumption on J :

$$
\begin{array}{cc}
\mu \in L^{2}\left(0, T ; W_{0}^{l, 2}(\Omega)\right), & F(\varphi) \in L^{\infty}\left(0, T ; L^{1}(\Omega)\right) \\
\Downarrow \\
\partial_{t} \varphi \in L^{2}\left(0, T ; W_{0}^{-l, 2}(\Omega)\right) & ?
\end{array}
$$

provided that $\varphi_{0} \in L^{2}(\Omega)$ and $F\left(\varphi_{0}\right) \in L^{1}(\Omega)$.

Part 2: The energy identity and estimates

- Bounds on $(0, T)$:

$$
\varphi \stackrel{?}{\in} L^{\infty}\left(0, T ; L^{2}(\Omega)\right) \cap L^{2}\left(0, T ; W_{0}^{\prime, 2}(\Omega)\right) .
$$

Part 2: The energy identity and estimates

- Bounds on $(0, T)$:

$$
\varphi \stackrel{?}{\in} L^{\infty}\left(0, T ; L^{2}(\Omega)\right) \cap L^{2}\left(0, T ; W_{0}^{\prime, 2}(\Omega)\right) .
$$

- Why care?

$$
L^{2}\left(0, T ; W_{0}^{\prime, 2}(\Omega)\right) \cap H^{1}\left(0, T ; W_{0}^{-1,2}(\Omega)\right) \stackrel{c}{\hookrightarrow} L^{2}\left(0, T ; L^{2}(\Omega)\right) .
$$

Part 2: The energy identity and estimates

- Bounds on $(0, T)$:

$$
\varphi \stackrel{?}{\in} L^{\infty}\left(0, T ; L^{2}(\Omega)\right) \cap L^{2}\left(0, T ; W_{0}^{I, 2}(\Omega)\right)
$$

- Why care?

$$
L^{2}\left(0, T ; W_{0}^{\prime, 2}(\Omega)\right) \cap H^{1}\left(0, T ; W_{0}^{-l, 2}(\Omega)\right) \stackrel{c}{\hookrightarrow} L^{2}\left(0, T ; L^{2}(\Omega)\right)
$$

- A good approximation scheme requires strong convergence!

Part 2: The energy identity and estimates

- Bounds on $(0, T)$:

$$
\varphi \stackrel{?}{\in} L^{\infty}\left(0, T ; L^{2}(\Omega)\right) \cap L^{2}\left(0, T ; W_{0}^{\prime, 2}(\Omega)\right)
$$

- Why care?

$$
L^{2}\left(0, T ; W_{0}^{\prime, 2}(\Omega)\right) \cap H^{1}\left(0, T ; W_{0}^{-I, 2}(\Omega)\right) \stackrel{c}{\hookrightarrow} L^{2}\left(0, T ; L^{2}(\Omega)\right) .
$$

- A good approximation scheme requires strong convergence!
- Recall $b(x, \varphi):=a(x) \varphi+F^{\prime}(\varphi)$, then for every $\psi \in W_{0}^{\prime, 2}(\Omega)$, a.e. $t \in(0, T)$ we have

$$
\begin{aligned}
& \left\langle\varphi_{t}, \psi\right\rangle+\mathcal{E}_{A}(\mu, \psi)=0 \\
& \mu=b(x, \varphi)-J * \varphi \text { a.e. in } \Omega
\end{aligned}
$$

Part 2: The energy identity and estimates

- Bounds on $(0, T)$:

$$
\varphi \stackrel{?}{\in} L^{\infty}\left(0, T ; L^{2}(\Omega)\right) \cap L^{2}\left(0, T ; W_{0}^{\prime, 2}(\Omega)\right) .
$$

- Why care?

$$
L^{2}\left(0, T ; W_{0}^{\prime, 2}(\Omega)\right) \cap H^{1}\left(0, T ; W_{0}^{-1,2}(\Omega)\right) \stackrel{c}{\hookrightarrow} L^{2}\left(0, T ; L^{2}(\Omega)\right)
$$

- A good approximation scheme requires strong convergence!
- Recall $b(x, \varphi):=a(x) \varphi+F^{\prime}(\varphi)$, then for every $\psi \in W_{0}^{\prime, 2}(\Omega)$, a.e. $t \in(0, T)$ we have

$$
\begin{aligned}
& \left\langle\varphi_{t}, \psi\right\rangle+\mathcal{E}_{A}(\mu, \psi)=0 \\
& \mu=b(x, \varphi)-J * \varphi \text { a.e. in } \Omega
\end{aligned}
$$

- Key point: use test function $\psi=\varphi$. But this requires dealing with doubly interaction terms in $\mathcal{E}_{A}(\mu, \varphi)!!!$

Part 2: The energy identity and estimates

- The energy identity

$$
\frac{1}{2} \frac{d}{d t}\|\varphi\|_{L^{2}(\Omega)}^{2}+\mathcal{E}_{A}(\mu, \varphi)=0
$$

but $\mu=a(x) \varphi-J * \varphi+F^{\prime}(\varphi)$ and

$$
\begin{aligned}
\mathcal{E}_{A}(\mu, \varphi) & =\int_{\Omega} \int_{\Omega} \rho(|x-y|)(\mu(x)-\mu(y))(\varphi(x)-\varphi(y)) d y d x \\
& =I_{1}+I_{2}+I_{3}
\end{aligned}
$$

where

$$
\left\{\begin{array}{l}
I_{1}:=\int_{\Omega} \int_{\Omega} \rho(|x-y|)\left(a(x)+q_{F}(\varphi)\right)(\varphi(x)-\varphi(y))^{2} d y d x, \\
I_{2}:=\int_{\Omega} \int_{\Omega} \rho(|x-y|)(a(x)-a(y)) \varphi(y)(\varphi(x)-\varphi(y)) d y d x, \\
I_{3}:=\int_{\Omega} \int_{\Omega} \rho(|x-y|)((J * \varphi)(x)-(J * \varphi)(y))(\varphi(x)-\varphi(y)) d y
\end{array}\right.
$$

and we have set

$$
q_{F}(\varphi):=\frac{F^{\prime}(\varphi(x))-F^{\prime}(\varphi(y))}{\varphi(x)-\varphi(y)}
$$

Part 2: The energy identity and estimates

- Assume that $a(x)+F^{\prime \prime}(s) \geq c_{0}$, a.e. $x \in \Omega, s \in \mathbb{R}$.

$$
\Longrightarrow a(x)+q_{F}(\varphi) \geq c_{0} \text { and so }
$$

$$
I_{1} \geq c_{0} \int_{\Omega} \int_{\Omega} \rho|x-y|(\varphi(x)-\varphi(y))^{2} d y d x=c_{0} \mathcal{E}_{A}(\varphi, \varphi)
$$

Part 2: The energy identity and estimates

- Assume that $a(x)+F^{\prime \prime}(s) \geq c_{0}$, a.e. $x \in \Omega, s \in \mathbb{R}$.

$$
\Longrightarrow a(x)+q_{F}(\varphi) \geq c_{0} \text { and so }
$$

$$
\iota_{1} \geq c_{0} \int_{\Omega} \int_{\Omega} \rho|x-y|(\varphi(x)-\varphi(y))^{2} d y d x=c_{0} \mathcal{E}_{A}(\varphi, \varphi)
$$

- Thus we have

$$
\frac{1}{2} \frac{d}{d t}\|\varphi\|_{L^{2}(\Omega)}^{2}+c_{0}\|\varphi\|_{W_{0}^{s, 2}}^{2} \leq\left|I_{2}\right|+\left|I_{3}\right| ;
$$

Part 2: The energy identity and estimates

- Assume that $a(x)+F^{\prime \prime}(s) \geq c_{0}$, a.e. $x \in \Omega, s \in \mathbb{R}$.

$$
\begin{aligned}
& \Longrightarrow a(x)+q_{F}(\varphi) \geq c_{0} \text { and so } \\
& \quad I_{1} \geq c_{0} \int_{\Omega} \int_{\Omega} \rho|x-y|(\varphi(x)-\varphi(y))^{2} d y d x=c_{0} \mathcal{E}_{A}(\varphi, \varphi) .
\end{aligned}
$$

- Thus we have

$$
\frac{1}{2} \frac{d}{d t}\|\varphi\|_{L^{2}(\Omega)}^{2}+c_{0}\|\varphi\|_{W_{0}^{s, 2}}^{2} \leq\left|I_{2}\right|+\left|I_{3}\right|
$$

- I_{2} can be estimated like I_{3}. Notice first

$$
\begin{aligned}
I_{3} & =\int_{\Omega} \int_{\Omega} \rho(|x-y|)((J * \varphi)(x)-(J * \varphi)(y))(\varphi(x)-\varphi(y)) d y d x \\
& \leq \frac{c_{0}}{4} \int_{\Omega} \int_{\Omega} \rho(|x-y|)(\varphi(x)-\varphi(y))^{2} d y d x \\
& +\frac{1}{c_{0}} \int_{\Omega} \int_{\Omega} \rho(|x-y|)((J * \varphi)(x)-(J * \varphi)(y))^{2} d y d x
\end{aligned}
$$

Part 2: The energy identity and estimates

- We split the last integral into two parts:

$$
\int_{\Omega} \int_{\Omega} \rho(|x-y|)((J * \varphi)(x)-(J * \varphi)(y))^{2} d y d x=A+B
$$

where

$$
\left\{\begin{array}{l}
A:=\int_{\Omega} \int_{\Omega:|x-y| \geq 1} \rho(|x-y|)((J * \varphi)(x)-(J * \varphi)(y))^{2} d y d x \\
B:=\int_{\Omega} \int_{\Omega:|x-y|<1} \rho(|x-y|)((J * \varphi)(x)-(J * \varphi)(y))^{2} d y d x
\end{array}\right.
$$

Part 2: The energy identity and estimates

- We split the last integral into two parts:

$$
\int_{\Omega} \int_{\Omega} \rho(|x-y|)((J * \varphi)(x)-(J * \varphi)(y))^{2} d y d x=A+B
$$

where

$$
\left\{\begin{array}{l}
A:=\int_{\Omega} \int_{\Omega:|x-y| \geq 1} \rho(|x-y|)((J * \varphi)(x)-(J * \varphi)(y))^{2} d y d x \\
B:=\int_{\Omega} \int_{\Omega:|x-y|<1} \rho(|x-y|)((J * \varphi)(x)-(J * \varphi)(y))^{2} d y d x .
\end{array}\right.
$$

- Consider $\widetilde{\varphi}_{\mid \Omega}=\varphi$ and $\widetilde{\varphi}_{\mid \mathbb{R}^{d} \backslash \Omega}=0$. Recall that $\rho(r)=C_{d, l} r^{-d-2 \mid}$, $I \in(0,1)$. We have

$$
\begin{aligned}
|A| & \leq 2 \int_{\Omega} \int_{\Omega:|x-y| \geq 1} \rho(|x-y|)\left(|(J * \varphi)(x)|^{2}+|(J * \varphi)(y)|^{2}\right) d y d x \\
& \leq 2\|\rho\|_{L^{\infty}[1, \infty)}\left(2|\Omega|\|J\|_{L^{1}}^{2}\|\varphi\|_{L^{2}}^{2}\right) \\
& \leq C_{\rho}|\Omega|\|J\|_{L^{1}}^{2}\|\varphi\|_{L^{2}}^{2} .
\end{aligned}
$$

Part 2: The energy identity and estimates

(1) For the B-term, use the Young convolution theorem in \mathbb{R}^{d}, so

$$
\begin{aligned}
|B| & \leq \int_{\Omega} \int_{B_{1}} \rho(|z|)((J * \varphi)(x)-(J * \varphi)(z+x))^{2} d z d x \\
& \leq \int_{\Omega} \int_{B_{1}}\left(\frac{|(J * \varphi)(x)-(J * \varphi)(z+x)|}{|z|}\right)^{2}|z|^{2} \rho(|z|) d z d x \\
& \leq \int_{\Omega} \int_{B_{1}}\left(\int_{0}^{1}|\nabla J * \varphi(x+t z)| d t\right)^{2}|z|^{2} \rho(|z|) d z d x \\
& \leq \int_{\mathbb{R}^{d}} \int_{B_{1}} \int_{0}^{1}|\nabla J * \widetilde{\varphi}(x+t z)|^{2}|z|^{2} \rho(|z|) d t d z d x \\
& \leq\|\nabla J\|_{L^{1}\left(\mathbb{R}^{d}\right)}^{2} \int_{B_{1}} \int_{0}^{1}|z|^{2} \rho(|z|)\|\widetilde{\varphi}\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2} d t d z \\
& \leq\left|S_{d-1}\right|\|J\|_{W^{1,1}\left(\mathbb{R}^{d}\right)}^{2}\left(\int_{0}^{1} r^{d+1} \rho(r) d r\right)\|\varphi\|_{L^{2}(\Omega)}^{2} \\
& =\bar{C}_{\rho}\left|S_{d-1}\right|\|J\|_{W^{1,1}\left(\mathbb{R}^{d}\right)}^{2}\|\varphi\|_{L^{2}(\Omega)}^{2}
\end{aligned}
$$

Part 2: The energy identity and estimates

- Key assumption: $J \in W_{\text {loc }}^{1,1}\left(\mathbb{R}^{d}\right)$. We have derived

$$
\frac{d}{d t}\|\varphi\|_{L^{2}(\Omega)}^{2}+c_{0}\|\varphi\|_{W_{0}^{s, 2}}^{2} \leq C\|\varphi\|_{L^{2}(\Omega)}^{2}
$$

which implies

$$
\varphi \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right), \varphi \in L^{2}\left(0, T ; W_{0}^{l, 2}(\Omega)\right)
$$

Part 2: The strong-to-weak interaction case

Theorem

Let $\varphi_{0} \in L^{2}(\Omega)$ such that $F\left(\varphi_{0}\right) \in L^{1}(\Omega)$ and suppose the previous assumptions on F, J. Then, for every $T>0$ there exists a (unique) weak solution φ satisfying the weak formulation. Furthermore, the following energy identity holds for any $t \geq 0$,

$$
\mathcal{N}(\varphi(t))+\int_{0}^{t}\|\mu(\tau)\|_{W_{0}^{s, 2}}^{2} d \tau=\mathcal{N}\left(\varphi_{0}\right)
$$

and the functions $t \mapsto\|\varphi(t)\|_{L^{2}(\Omega)}^{2}$ and $t \mapsto(F(\varphi(t)), 1)_{L^{2}(\Omega)}$ are absolutely continuous on $[0, T]$. Here, we have

$$
\mathcal{N}(\varphi)=\frac{1}{4} \int_{\Omega \times \Omega} J(x-y)|\varphi(x)-\varphi(y)|^{2} d x d y+\int_{\Omega} F(\varphi) d x
$$

Part 2: The strong-to-weak interaction case, further results

(1) Regularity of weak solutions: existence of strong solutions! \Longrightarrow finite dimensional global attractors!
C.G. Gal, Doubly nonlocal Cahn-Hilliard equations. Annales Henry Poincare Nonlin. Anal. (2017), to appear.

Part 2: The strong-to-weak interaction case, further results

(1) Regularity of weak solutions: existence of strong solutions! \Longrightarrow finite dimensional global attractors!
(2) Convergence to a single steady state:

$$
\varphi(t) \rightarrow \varphi_{*} \text { in } L^{\infty}(\Omega) \text {-topology }
$$

where

$$
a(x) \varphi_{*}-J * \varphi_{*}+F^{\prime}\left(\varphi_{*}\right)=\text { const. in } \Omega .
$$

C.G. Gal, Doubly nonlocal Cahn-Hilliard equations. Annales Henry Poincare Nonlin. Anal. (2017), to appear.

Many open questions

- The weak-to-weak interaction case when both $\rho, J \in L_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right)$.
- The weak-to-strong interaction case when $\rho \in L_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right)$ and $J \notin L_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right)$.
- F is a singular (log) potential in all cases of interaction.
- Further regularity of weak solutions: $\varphi \in C^{\beta / 2, \beta}((0, T) \times \bar{\Omega})$?
- Either one of the nonnegative kernels K, J is not radially symmetric. What happens?
- The case $\Omega=R^{d}$.
- Numerical treatment? None but fundamental issue!

Any questions???

