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The classical form of the CHE

e Cahn and Hilliard 1958: model for (isothermal) phase separation
phenomena in materials made of two components.

9@ +div(M) =0, u=—-Ap+ F' (¢), in Qx(0,00).
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The classical form of the CHE

e Cahn and Hilliard 1958: model for (isothermal) phase separation
phenomena in materials made of two components.

9@ +div(M) =0, u=—-Ap+ F' (¢), in Qx(0,00).

@ @ is the relative difference of the two phases with £1 corresponding
to pure phases; ¢ € (—1,1) corresponds to the transition in the
interface between the two material phases.

@ Mass flux M = —m (¢) Vu; m is mobility, u is called the chemical
potential and is determined as

1
Eucle) = [ (51707 ~0cg? +0F () ) o

assuming
M-v=Ve¢-v=0o0n3Qx (0,00);
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The classical form of the CHE

e Cahn and Hilliard 1958: model for (isothermal) phase separation
phenomena in materials made of two components.

9@ +div(M) =0, u=—-Ap+ F' (¢), in Qx(0,00).

@ @ is the relative difference of the two phases with £1 corresponding
to pure phases; ¢ € (—1,1) corresponds to the transition in the
interface between the two material phases.

@ Mass flux M = —m (¢) Vu; m is mobility, u is called the chemical
potential and is determined as

1
Eucle) = [ (51707 ~0cg? +0F () ) o
assuming
M-v=Ve¢-v=0o0n0dQ x (0,0);

@ No phase separation when 6 > 6. but only when 6 < 6. (The early
stages of the universe)!!!
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The classical form of the CHE

e F is a logarithmic (bounded in R) potential

F(r)y=(1+4r)log(L+r)+(1—r)log(1l—r)

often replaced by a regular (unbounded in R) polynomial F(r) = r*.
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The classical form of the CHE

e F is a logarithmic (bounded in R) potential

F(r)y=@0Q4r)log(L+r)+(1—r)log(1—r)
often replaced by a regular (unbounded in R) polynomial F(r) = r*.

@ Conservation of "mass":

jt/ (tx)dX—O:>/ (t,x) dX—/QQD(O.X)dx.
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The classical form of the CHE

e F is a logarithmic (bounded in R) potential

F(r)y=(1+4r)log(L+r)+(1—r)log(1l—r)

often replaced by a regular (unbounded in R) polynomial F(r) = r*.

@ Conservation of "mass":

i/ﬁ(p(t,x)dx:Oé/O(p(t,x)dx:/ng(O,x)dx.

@ Real-world applications:

either m(r) =mo >0o0r m(r) =mg (1—r?), re[-1,1].
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The classical form of the CHE
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The classical form of the CHE

@ Constant mobility case:
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@ Constant mobility case:

@ Cherfils-Miranville-Zelik 2011 (survey paper).
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The classical form of the CHE

@ Constant mobility case:

@ Cherfils-Miranville-Zelik 2011 (survey paper).

@ Global well-posedness of weak (energy) solutions: Debussche-Dettori
1995 (F is logarithmic), Elliott 1989 (F is polynomial),
Kenmochi-Niezgodka-Pawlow 1995 (both polynomial and
logarithmic).
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The classical form of the CHE

@ Constant mobility case:

@ Cherfils-Miranville-Zelik 2011 (survey paper).

@ Global well-posedness of weak (energy) solutions: Debussche-Dettori
1995 (F is logarithmic), Elliott 1989 (F is polynomial),
Kenmochi-Niezgodka-Pawlow 1995 (both polynomial and
logarithmic).

© Regularity and global longtime behavior: Miranville-Zelik 2004,
Abels-Wilke 2007 (F is logarithmic).
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The classical form of the CHE

@ Constant mobility case:

@ Cherfils-Miranville-Zelik 2011 (survey paper).

@ Global well-posedness of weak (energy) solutions: Debussche-Dettori
1995 (F is logarithmic), Elliott 1989 (F is polynomial),
Kenmochi-Niezgodka-Pawlow 1995 (both polynomial and
logarithmic).

© Regularity and global longtime behavior: Miranville-Zelik 2004,
Abels-Wilke 2007 (F is logarithmic).

@ Degenerate mobility:
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The classical form of the CHE

@ Constant mobility case:

@ Cherfils-Miranville-Zelik 2011 (survey paper).

@ Global well-posedness of weak (energy) solutions: Debussche-Dettori
1995 (F is logarithmic), Elliott 1989 (F is polynomial),
Kenmochi-Niezgodka-Pawlow 1995 (both polynomial and
logarithmic).

© Regularity and global longtime behavior: Miranville-Zelik 2004,
Abels-Wilke 2007 (F is logarithmic).

@ Degenerate mobility:

@ Existence result for a weak (energy) solution: Elliott-Garcke 1996 (F
is logarithmic).
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The classical form of the CHE

@ Constant mobility case:

@ Cherfils-Miranville-Zelik 2011 (survey paper).

@ Global well-posedness of weak (energy) solutions: Debussche-Dettori
1995 (F is logarithmic), Elliott 1989 (F is polynomial),
Kenmochi-Niezgodka-Pawlow 1995 (both polynomial and
logarithmic).

© Regularity and global longtime behavior: Miranville-Zelik 2004,
Abels-Wilke 2007 (F is logarithmic).

@ Degenerate mobility:

@ Existence result for a weak (energy) solution: Elliott-Garcke 1996 (F
is logarithmic).

@ Uniqueness and regularity still open issues!!!
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Is the classical form general enough?

@ Derivation of the classical CHE is purely phenomenological!!!
Cahn-Hilliard 1958, Gurtin 1996 (second law)
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Is the classical form general enough?

@ Derivation of the classical CHE is purely phenomenological!!!
Cahn-Hilliard 1958, Gurtin 1996 (second law)

@ It does not arise from a microscopic particle system (such as the Ising
model) in a suitable limit!

@ Giacomin-Lebowitz 1997 — nonlocal version of CHE.
@ FEj,. occurs as a first order-approximation of the nonlocal free energy

Eronoc(9) = 5 [ [ 0= ) l9(x) 9y Py
—i—/QQF(qo) — 0. ¢%dx,

where 1
O := E/QJ(X—y)dy.
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Is the classical form general enough?

@ Run simulation of Ising particle model:

https://www.youtube.com /watch?v=kjwKgpQ-I1s
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Is the classical form general enough?

@ The nonlocal CHE reads
9:¢ +div(M) =0, u=a(x)g—Jxo+F (), in Qx(0,00),

where

U p)() = [ Jxc=y)ptdy, al)i= [ Jx=y)dy.
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Is the classical form general enough?

@ The nonlocal CHE reads
9:¢ +div(M) =0, u=a(x)g—Jxo+F (), in Qx(0,00),
where
U @)x)i= [ Jx=y)pdy, alx):= [ Jx—y)dy.

@ Interaction between particles is reflected through a symmetric
J.Assume again
M -v =0 on Q) x (0,).
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Is the classical form general enough?

@ The nonlocal CHE reads

drg+div(M) =0, u=a(x)g—Jx¢+ F (¢), in Qx(0,00),

where
U @)x)i= [ Jx=y)pdy, alx):= [ Jx—y)dy.

@ Interaction between particles is reflected through a symmetric
J.Assume again
M -v =0 on Q) x (0,).

@ We still have conservation of mass!
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The nonlocal CHE of Giacomin-Lebowitz 1997

The NCHE = (second-order) quasi-linear equation:

I +V - (m(9)q(x,9) Vo +m(9) Vag —m(¢) VJ*¢) =0,
qg(x.9)=a(x)+F ().
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The nonlocal CHE of Giacomin-Lebowitz 1997

o Degenerate mobility: m (r) = mo/F" (r) = mo (1 —r?),
re[-1,1].
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The nonlocal CHE of Giacomin-Lebowitz 1997

o Degenerate mobility: m (r) = mo/F" (r) = mo (1 —r?),
re[-1,1].
@ Well-posedness of weak (energy) solutions: Gajewski-Zacharias 2003,
S. Frigeri-Grasselli-Rocca 2015.
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The nonlocal CHE of Giacomin-Lebowitz 1997

o Degenerate mobility: m (r) = mo/F" (r) = mo (1 —r?),
rel-11].
@ Well-posedness of weak (energy) solutions: Gajewski-Zacharias 2003,
S. Frigeri-Grasselli-Rocca 2015.
@ Some regularity and long-time behavior: Gal-Grasselli 2014,
Londen-Petzeltova 2011.
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The nonlocal CHE of Giacomin-Lebowitz 1997

o Degenerate mobility: m (r) = mo/F" (r) = mo (1 —r?),
rel-11].

@ Well-posedness of weak (energy) solutions: Gajewski-Zacharias 2003,
S. Frigeri-Grasselli-Rocca 2015.

@ Some regularity and long-time behavior: Gal-Grasselli 2014,
Londen-Petzeltova 2011.

Q@ m(r)F" (r) > my. Maximal LP-regularity
(Giorgini-Frigeri-Gal-Grasselli 2017) = complete picture!!!

(Institute) Phase-transitions with anomalous diffusion May, 2019 10 / 42
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o Degenerate mobility: m (r) = mo/F" (r) = mo (1 —r?),
rel-11].

@ Well-posedness of weak (energy) solutions: Gajewski-Zacharias 2003,
S. Frigeri-Grasselli-Rocca 2015.

@ Some regularity and long-time behavior: Gal-Grasselli 2014,
Londen-Petzeltova 2011.

Q@ m(r)F" (r) > my. Maximal LP-regularity
(Giorgini-Frigeri-Gal-Grasselli 2017) = complete picture!!!

e Constant mobility: m(r) = mg > 0.
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The nonlocal CHE of Giacomin-Lebowitz 1997

o Degenerate mobility: m (r) = mo/F" (r) = mo (1 —r?),
re[-1,1].
@ Well-posedness of weak (energy) solutions: Gajewski-Zacharias 2003,
S. Frigeri-Grasselli-Rocca 2015.

@ Some regularity and long-time behavior: Gal-Grasselli 2014,
Londen-Petzeltova 2011.

Q@ m(r)F" (r) > my. Maximal LP-regularity
(Giorgini-Frigeri-Gal-Grasselli 2017) = complete picture!!!

e Constant mobility: m(r) = mg > 0.
@ Regular polynomial potential F: well-posedness (Bates-Han 2005,

Colli-Frigeri-Grasselli 2012), long-time behavior (Gal-Grasselli 2014,
Frigeri-Gal-Grasselli 2016).
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The nonlocal CHE of Giacomin-Lebowitz 1997

o Degenerate mobility: m (r) = mo/F" (r) = mo (1 —r?),
rel-11].

@ Well-posedness of weak (energy) solutions: Gajewski-Zacharias 2003,
S. Frigeri-Grasselli-Rocca 2015.

@ Some regularity and long-time behavior: Gal-Grasselli 2014,
Londen-Petzeltova 2011.

Q@ m(r)F" (r) > my. Maximal LP-regularity
(Giorgini-Frigeri-Gal-Grasselli 2017) = complete picture!!!

e Constant mobility: m(r) = mg > 0.

@ Regular polynomial potential F: well-posedness (Bates-Han 2005,
Colli-Frigeri-Grasselli 2012), long-time behavior (Gal-Grasselli 2014,
Frigeri-Gal-Grasselli 2016).

@ Logarithmic potential F: maximal LP-regularity and long-term
behavior (Giorgini-Gal-Grasselli 2017: 2D results only) 3D case still
openl!!!
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Why doubly nonlocal CHE?

e Particle transport obeys Fick's law of diffusion: M = —m (¢) V.
Assume m is constant!
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Why doubly nonlocal CHE?

e Particle transport obeys Fick's law of diffusion: M = —m (¢) V.
Assume m is constant!
@ Then the nonlocal CHE is equivalent to

9:¢+Au=0, u=Bo+F (¢), in Qx(0,00),
where
A = —Ap (The Neumann Laplacian on Q}),

By = alx)p—Jrg= [ Jx—y)(p(x)=o(y) dy,

provided that J € L} _and symmetric.

loc
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Why doubly nonlocal CHE?

e Particle transport obeys Fick's law of diffusion: M = —m (¢) V.
Assume m is constant!
@ Then the nonlocal CHE is equivalent to

9:¢p+Au =0, u=Bp+F (¢), in QA x(0,00),
where

A = —Ap (The Neumann Laplacian on Q}),
By = alx)p—Jrg= [ Jx—y)(p(x)=o(y) dy,

provided that J € L} _and symmetric.

loc
@ Multiscale heterogeneous environment (): Neumana-Tartakovsky

2009, Vlahos-Isliker-Kominis-Hizonidis 2008;

anamolous (nonlocal) transport law replaces local one!
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Why doubly nonlocal CHE?

@ The classical conservation law 9;¢+div(M) = 0 must be replaced by
a nonlocal formulation for mass transport:

dr¢ + Ap =0,

where

A =PV [ Klx=y) (uly) = p (x)) dy
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Why doubly nonlocal CHE?

@ The classical conservation law 9;¢+div(M) = 0 must be replaced by
a nonlocal formulation for mass transport:

drp + Ap =0,
where

A =PV [ Klx=y) (uly) = p (x)) dy

def

Elim [ K () ()

e—0t

e Contrast to previous analysis: y is only measurable (with no
assumed a priori regularity!).
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Why doubly nonlocal CHE?

@ The classical conservation law 9;¢+div(M) = 0 must be replaced by
a nonlocal formulation for mass transport:

dr¢ + Ap =0,

where

A =PV [ Klx=y) (uly) = p (x)) dy

def

Elim [ K () ()

e—0t

e Contrast to previous analysis: y is only measurable (with no
assumed a priori regularity!).

@ K encodes the physical properties of the environment () in a manner
in which mass is being transported throughout ).
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The doubly nonlocal CHE

@ The doubly nonlocal CHE reads (more generally) as
39+ A =0, p=Bp+F (¢) in Qx(0,00).
where
An = PV [ K(x=y) (u(y) =1 (x) dy,

Bo = PV. [ Jix=y)(oly) — ¢ () dy.
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The doubly nonlocal CHE

@ The doubly nonlocal CHE reads (more generally) as
39+ A =0, p=Bp+F (¢) in Qx(0,00).
where
An = PV [ K(x=y) (u(y) =1 (x) dy,
Bo = PV. [ Jix=y)(oly) — ¢ () dy.

o K(x,y)=p(|x—y|) and J(x) = J (—x), we classify:
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The doubly nonlocal CHE

e The doubly nonlocal CHE reads (more generally) as
39+ A =0, p=Bp+F (¢) in Qx(0,00).
where
An = PV [ K(x=y) (u(y) =1 (x) dy,
Bo = PV. [ Jix=y)(oly) — ¢ () dy.
o K(x,y)=p(Ix—yl|) and J(x) = J(—x), we classify:

@ the strong-to-weak interaction case: p ¢ L1 (]Rd), Jell (]Rd) :

loc loc
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The doubly nonlocal CHE

e The doubly nonlocal CHE reads (more generally) as
39+ A =0, p=Bp+F (¢) in Qx(0,00).
where
An = PV [ K(x=y) (u(y) =1 (x) dy,
Bo = PV. [ Jix=y)(oly) — ¢ () dy.
o K(x,y)=p(Ix—yl|) and J(x) = J(—x), we classify:

@ the strong-to-weak interaction case: p ¢ L1 (]Rd), Jell (]Rd) :

loc loc

@ the weak-to-weak interaction case: p, J € Ll (]Rd) :

loc
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The doubly nonlocal CHE

e The doubly nonlocal CHE reads (more generally) as
39+ A =0, p=Bp+F (¢) in Qx(0,00).
where
An = PV [ K(x=y) (u(y) =1 (x) dy,
Bo = PV. [ Jix=y)(oly) — ¢ () dy.
o K(x,y)=p(Ix—yl|) and J(x) = J(—x), we classify:

@ the strong-to-weak interaction case: p ¢ L1 (]Rd), Jell (]Rd) :

loc loc
@ the weak-to-weak interaction case: p, J € L}OC (]Rd) :
@ The weak-to-strong interaction case: p € L, (RY), J ¢ L},  (RY);
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The doubly nonlocal CHE

@ The doubly nonlocal CHE reads (more generally) as
@+ Au =0, u=Bp+F (¢) in Qx(0,00).

where
An = PV [ K(x=y) (u(y) =1 (x) dy,
Bo = PV. [ Jix=y)(oly) — ¢ () dy.
o K(x,y)=p(|x—y|) and J(x) = J (—x), we classify:

@ the strong-to-weak interaction case: p ¢ L,OC (]Rd) Je L,oc (]Rd) :
@ the weak-to-weak interaction case: p,J € L} _ (]Rd) ;

@ The weak-to-strong interaction case: p € L, (RY), J ¢ L},  (RY);
@ The strong-to-strong interaction case: p,J ¢ L}, (R9).

loc
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Part 1. The strong-to-strong interaction case

e Fixse (0,1), and set

L(Q) :={u: QO — R measurable, /Q (1—1’-UIE<)\<;"’+25dX < oo}.
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Part 1. The strong-to-strong interaction case

e Fixse (0,1), and set

L(Q) :={u: QO — R measurable, /Q (1—1’-u]E<)\<;"’+25dX < co}.

o Regional fractional Laplacian (—A)g;:

(—A)%u(x) = PV. Cy /Wdy,xeﬂ ue L(Q).
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Part 1. The strong-to-strong interaction case

e Fixse (0,1), and set

L(Q) :={u: QO — R measurable, /Q (1—1’-u]E<)\<;"’+25dX < co}.

o Regional fractional Laplacian (—A)g;:

(—A)%u(x) = PV. Cy /|)((X_;|5+<25))dy,x60 ue L(Q).

@ Possible boundary conditions: Neumann BCs of "fractional" type as
well as Dirichlet BCs (for the sake of presentation):

u =0 on Q).
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Part 1. The strong-to-strong interaction case

e Fixse (0,1), and set

L(Q) :={u: QO — R measurable, /Q (1—1’-u]E<)\<;"’+25dX < co}.

o Regional fractional Laplacian (—A)g;:

(—A)%u(x) = PV. Cy /|)((X__|5+(2S))dy,x60 ue L(Q).

@ Possible boundary conditions: Neumann BCs of "fractional" type as
well as Dirichlet BCs (for the sake of presentation):
u =0 on dQ.
o (—A)g p = realization of (—A), on L?(€)) with the Dirichlet
boundary condition. We have
Dom((=8)h,p) = {u€Wg?(Q) (-8)qu € L2(Q)}
(=A)apu (=A)qu.
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Part 1. The strong-to-strong interaction case

5,2

o Here, W32(Q) =D (Q)" with

Goa [ [ 0w
2 d 2
lulfives = =% [ [ e oo+ [ 1uGf e

= :&a (U, U) + ||U||L2(Q)

(Institute) Phase-transitions with anomalous diffusion May, 2019 15 / 42



Part 1. The strong-to-strong interaction case

5,2

o Here, W32(Q) =D (Q)" with

C lu (x) — u(y)]?
2 d 2
lolfie = 75 ey + [ o () o

= &a(uu)+ ||U||L2(Q)

o Note W;2(Q) C L%9(Q) with

qg= dil2s if d>2s andanyq € (1,00) if d <2s, and

W2 (Q) S 12 (Q).
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Part 1. The strong-to-strong interaction case

5,2

o Here, W32(Q) =D (Q)" with

C lu (x) — u(y)]?
2 d 2
lolfie = 75 ey + [ o () o

= &a(uu)+ ||U||L2(Q)

o Note W;2(Q) C L%9(Q) with

q= dflzs if d>2s andanyq € (1,00) if d <2s, and

W2 (Q) S 12 (Q).
@ It can be proven that

Dom((—A)p) C L% (Q) if s > %_
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Part 1. The strong-to-strong interaction case

@ Recall the doubly nonlocal CHE in abstract form reads

@+ Au =0, u=Bp+F (¢) in Qx(0,00).
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Part 1. The strong-to-strong interaction case

@ Recall the doubly nonlocal CHE in abstract form reads
@+ Au =0, u=Bp+F (¢) in Qx(0,00).

e F is a polynomial potential, i.e., F (r) = 0r* — 0.r°.

Table:
Model | Classical CHE | Doubly nonlocal CHE, case (4)
A —Aan (—A);D, s1 € (0,1)
B | —ban (=82 . 5 € (0,1)
Table:
Model | CHE: anamolous transport | CHE: nonlocal strong energy
A (_A)f),D' s€(0,1) AYN
B —Aan (=08 p. s €(0,1)
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Part 1. The strong-to-strong interaction case

@ Our approach:
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@ Concept of (energy) bilinear forms and associated diffusion operators
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Part 1. The strong-to-strong interaction case

@ Our approach:

@ Concept of (energy) bilinear forms and associated diffusion operators
A B.

@ Q need not be smooth (for instance, Q) is a bounded domain with
Lipschitz continuous boundary).
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Part 1. The strong-to-strong interaction case

@ Our approach:

@ Concept of (energy) bilinear forms and associated diffusion operators
A, B.

@ Q need not be smooth (for instance, Q) is a bounded domain with
Lipschitz continuous boundary).

© Examples: A, B may be associated with classical operators (such as
Aq p,Aq,n) or nonlocal ones!
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Part 1. The strong-to-strong interaction case

@ Our approach:
@ Concept of (energy) bilinear forms and associated diffusion operators
A, B.
@ Q need not be smooth (for instance, Q) is a bounded domain with
Lipschitz continuous boundary).
© Examples: A, B may be associated with classical operators (such as
Aq p,Aq,n) or nonlocal ones!

@ Results:

@ Well-posedness of weak and strong solutions;
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Part 1. The strong-to-strong interaction case

@ Our approach:
@ Concept of (energy) bilinear forms and associated diffusion operators
A, B.
@ Q need not be smooth (for instance, Q) is a bounded domain with
Lipschitz continuous boundary).
© Examples: A, B may be associated with classical operators (such as
Aq p,Aq,n) or nonlocal ones!

@ Results:

@ Well-posedness of weak and strong solutions;

@ Regularity and long-time behavior in terms of finite dimensional
global attractors.
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Part 1. The strong-to-strong interaction case

e For simplicity, let A:= (=A) p, B:= (—A)§, p, fors, /€ (0,1).
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Part 1. The strong-to-strong interaction case

e For simplicity, let A:= (=A) p, B:= (—A)§, p, fors, /€ (0,1).
@ The elliptic problem:

Bu(x)+f(u(x))=h(x), xeQ,

where h € LP (Q) for some p > 1. Here, f = F € C* (R) is a
nonlinear function which satisfies

(1)t > aot? —aq, f (t) > —ap. forall t € R, [t]| > to,

Here ag > 0, a1, 0 > 0; tg > 0 is large enough.
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Part 1. The strong-to-strong interaction case

e For simplicity, let A:= (=A) p, B:= (—A)§, p, fors, /€ (0,1).
@ The elliptic problem:

Bu(x)+f(u(x))=h(x), xeQ,

where h € LP (Q) for some p > 1. Here, f = F € C* (R) is a
nonlinear function which satisfies

(1)t > aot? —aq, f (t) > —ap. forall t € R, [t]| > to,

Here ag > 0, a1, 0 > 0; tg > 0 is large enough.

@ We say that u is a bounded generalized solution if
ue W2 (Q)NL®(Q) and

€ (u,v)+/Qf(u(x))v(x)dx:/Qh(x)v(x)dx,

for all v € W52 (Q).
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Part 1. The strong-to-strong interaction case

Theorem

Under the above assumptions on f, there is at least one bounded solution
provided that h € LP (Q)) with p > 2%_. Moreover, we have

lull oy < € (24 1Al o)

for some constant C > 0 independent of u and h

Corollary

| A\

Under the same assumptions, if h € LP (Q) N L2 (Q)), then
u€ D(B)NL®(Q) such that

1Bul oy < @ (1 + Il waynuzen )

for some function @ > 0 independent of u and h.
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Strong solutions

o Energy space
Z = {(uo. 1) € D(B) x Wg? ()}, D(B) = D((=A)3,p)
with norm (with respect to the pair (ug, 11y)),
luoll% = lluolDgs) + lollivse
where 11, is computed via the equation

1o = Bug + f (up) in Q.
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Strong solutions

Definition

Let 0 < T < 40 be given. We say u is a strong solution if u, u satisfy
u€ L®(0, T;D(B)NL®(Q)), d;u € L2(0, T; W§? (Q)),
pe L0, T; Wg?(Q))NL2(0, T; D (A)).

In particular, for the strong solution we have d:u = —Ay, a.e. in
Ox(0,T)and p=Bu+f(u), ae inQx(0,T).
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Strong solutions

@ Regularized version /problem for (u, ]1) = (Ue,av ,146,“)1
otu= —Au, u :ocatu-i-Bu-i-fs(U), ((Pe.a))

where {fe = Fé} is such that f. — f uniformly on compact intervals

of R, with the property that |£. (s) | < cr..
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Strong solutions

@ Regularized version /problem for (u, ]1) = (Ue,av ,146,“)1
otu= —Au, u :ocatu-i-Bu-i-fs(U), ((Pe.a))

where {fe = Fé} is such that f. — f uniformly on compact intervals
of R, with the property that |£. (s) | < cr..

@ Existence of a strong solution to (P¢,) by a backward
(finite-difference) Euler scheme.
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Strong solutions

@ Regularized version /problem for (u, ]/l) = (Ue,av }46,“)1
otu= —Au, u :ocatu-i-Bu-i-fs(U), ((Pe.a))

where {fe = Fé} is such that f. — f uniformly on compact intervals
of R, with the property that |£. (s) | < cr..

@ Existence of a strong solution to (P¢,) by a backward
(finite-difference) Euler scheme.

@ Derive uniform estimates and pass to the limit as (€,a) — (0,0).
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Strong solutions

@ Regularized version /problem for (u, ]/l) = (Ue,av }46,“)1
otu= —Au, u :ocatu-i-Bu-i-fs(U), ((Pe.a))

where {fe = Fé} is such that f. — f uniformly on compact intervals
of R, with the property that |£. (s) | < cr..

@ Existence of a strong solution to (P¢,) by a backward
(finite-difference) Euler scheme.

@ Derive uniform estimates and pass to the limit as (€,a) — (0,0).
Q@ Main assumption on F € C*(R), (Hf-1): lims_ F (s) = o0 and
for some ¢r,c1 >0, & > 0,

F(s)s>as’—c and f (s) = F'(s) > —c, foralls € R.
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Strong solutions

Let (uo, o) € Z for some s > %. Then there exists at least one strong
solution in the sense of definition.
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Weak solutions

o Weak energy space
Y = {u eWS2(Q): F(u) e (Q)}

with the following metric

1/2
d(u, w) = ||ug — quW05,2 + ‘/QF(ul) — F (up) dx

@ Two more assumptions on F :
(Hf-2) There exists a constant ¢ > 0 and p € (1, 2] such that

[f(s)|P <cr(|F(s)|+1), forall s € R.
(Hf-3) There exist G; > 0, C; > 0 and p € (1, 2] such that
F(s)> G \s|p/(p71) — G, forallseR.

o F(s) = 0s* — 0.5 satisfies (Hf-1)-(Hf-3) with p = 4/3 (and so
p:=p/(p—1)=4).
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Weak solutions

@ Weak solution: uy € Y and u satisfies

ueL®(0,T;Y), d:uc L0, T; Wy "2 (Q)),
ue 20, T; W% (Q)),
F(u) € L®(0, T; L1 (Q)), f(u) € L®(0, T;LP(Q))

Definition

o forevery v € W52 (Q)NLP(Q), we W2 (Q), ae t€(0,T) we
have

(0cu (1), w) + Ea (u (1),
€ (u(t),v)+(f(u(t)),v) = ( (t),v).

e We have u(0) = up in Q.
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Weak solutions

o Energy identity: test with w = u and v = d;u in L? (Q)) and add the
resulting equations:

jt( (u )+/ )+5A(V(t)'ﬂ(t))=0-
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Weak solutions

o Energy identity: test with w = u and v = d;u in L? (Q)) and add the
resulting equations:

& (S5 000100+ [ F o)) + 81 0(0.0(0) =0

e It is justifiable for strong solutions u,, with (ugn, tg,) € Z.
Approximate ug € Y by a sequence (uon, #y,) € Z.
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Weak solutions

o Energy identity: test with w = u and v = d;u in L? (Q)) and add the
resulting equations:

& (S5 000100+ [ F o)) + 81 0(0.0(0) =0

e It is justifiable for strong solutions u,, with (ugn, tg,) € Z.
Approximate ug € Y by a sequence (uon, #y,) € Z.

@ Use the energy identity to control the solutions uniformly with respect
to n — oo.
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Weak solutions

o Energy identity: test with w = u and v = d;u in L? (Q)) and add the
resulting equations:

& (S5 000100+ [ F o)) + 81 0(0.0(0) =0

e It is justifiable for strong solutions u,, with (ugn, tg,) € Z.
Approximate ug € Y by a sequence (uon, #y,) € Z.

@ Use the energy identity to control the solutions uniformly with respect
to n — oo.

@ Pass to the limit in n using the uniform (weak) energy bounds.
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Weak solutions

Theorem

Let F satisfy the assumptions (Hf-1), (Hf-2), (Hf-3) and assume s > %.
For every initial datum ug € Y, there exists at least one weak solution in
the sense of the previous definition. Moreover,

uel® (0, T:LP (Q)) , forany T > 0.

Problem

| A\

It may be possible to remove the condition s > % (recall that
B = (-A)§4.p. s €(0,1)) by using further perturbation arguments!
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Part 2: The strong-to-weak interaction case

@ The doubly nonlocal CHE reads (more generally) as
39+ A =0, p=Bp+F (¢) in Qx(0,00).
where
An = PV [ K(x=y) (u(y) =1 (x) dy,

Bo = PV. [ Jix=y)(oly) — ¢ () dy.
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Part 2: The strong-to-weak interaction case

@ The doubly nonlocal CHE reads (more generally) as
39+ A =0, p=Bp+F (¢) in Qx(0,00).
where
An = PV [ K(x=y) (u(y) =1 (x) dy,
Bo = PV. [ Jix=y)(oly) — ¢ () dy.

o K(x,y)=p(|x—y|) and J(x) = J (—x), we classify:
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Part 2: The strong-to-weak interaction case

e The doubly nonlocal CHE reads (more generally) as
39+ A =0, p=Bp+F (¢) in Qx(0,00).
where
An = PV [ K(x=y) (u(y) =1 (x) dy,
Bo = PV. [ Jix=y)(oly) — ¢ () dy.
o K(x,y)=p(Ix—yl|) and J(x) = J(—x), we classify:

@ the strong-to-weak interaction case: p ¢ L1 (]Rd), Jell (]Rd) :

loc loc
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Part 2: The strong-to-weak interaction case

e The doubly nonlocal CHE reads (more generally) as
39+ A =0, p=Bp+F (¢) in Qx(0,00).
where
An = PV [ K(x=y) (u(y) =1 (x) dy,
Bo = PV. [ Jix=y)(oly) — ¢ () dy.
o K(x,y)=p(Ix—yl|) and J(x) = J(—x), we classify:

@ the strong-to-weak interaction case: p ¢ L1 (]Rd), Jell (]Rd) :

loc loc

@ the weak-to-weak interaction case: p, J € Ll (]Rd) :

loc
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Part 2: The strong-to-weak interaction case

e The doubly nonlocal CHE reads (more generally) as
39+ A =0, p=Bp+F (¢) in Qx(0,00).
where
An = PV [ K(x=y) (u(y) =1 (x) dy,
Bo = PV. [ Jix=y)(oly) — ¢ () dy.
o K(x,y)=p(Ix—yl|) and J(x) = J(—x), we classify:

@ the strong-to-weak interaction case: p ¢ L1 (]Rd), Jell (]Rd) :

loc loc
@ the weak-to-weak interaction case: p, J € L}OC (]Rd) :
@ The weak-to-strong interaction case: p € L, (RY), J ¢ L},  (RY);
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Part 2: The strong-to-weak interaction case

@ The doubly nonlocal CHE reads (more generally) as
@+ Au =0, u=Bp+F (¢) in Qx(0,00).

where
An = PV [ K(x=y) (u(y) =1 (x) dy,
Bo = PV. [ Jix=y)(oly) — ¢ () dy.
o K(x,y)=p(|x—y|) and J(x) = J (—x), we classify:

@ the strong-to-weak interaction case: p ¢ L,OC (]Rd) Je L,oc (]Rd) :
@ the weak-to-weak interaction case: p,J € L} _ (]Rd) ;

@ The weak-to-strong interaction case: p € L, (RY), J ¢ L},  (RY);
@ The strong-to-strong interaction case: p,J ¢ L}, (R9).

loc
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Part 2: The strong-to-weak interaction case

o Take for simplicity again A = (—A)g p, for I € (0,1) (namely
o (r) = Cqyr2=9), but if J € LL_, we have

B:LP(Q) — LP(Q) is bounded.
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Part 2: The strong-to-weak interaction case

o Take for simplicity again A = (—A)g p, for I € (0,1) (namely
p(r) = Cyyr=2=9), but if J € L}, we have
B:LP(Q) — LP(Q) is bounded.
@ Indeed, since Bp (x) = (J*¢) (x) —a(x) ¢ (x) and a € L® (Q)), by
Young convolution theorem (||J * @||;, < C||J||,2 ||@] . for any
p € [1,00]).
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Part 2: The strong-to-weak interaction case

o Take for simplicity again A = (—A)g p, for I € (0,1) (namely
p(r) = Cyyr=2=9), but if J € L}, we have
B:LP(Q) — LP(Q) is bounded.
@ Indeed, since Bp (x) = (J*¢) (x) —a(x) ¢ (x) and a € L® (Q)), by
Young convolution theorem (||J * @||;, < C||J||,2 ||@] . for any
p € [1,00]).
@ Combining the two interactions in the equation leads to energy
terms like

L L p(x=yD) (5 9) () = (U5 9) 1)) (9 (x) = ¢ () dyex.
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Part 2: The strong-to-weak interaction case

o Take for simplicity again A = (—A)g p, for I € (0,1) (namely
p(r) = Cyyr=2=9), but if J € L}, we have
B:LP(Q) — LP(Q) is bounded.
@ Indeed, since Bp (x) = (J*¢) (x) —a(x) ¢ (x) and a € L® (Q)), by
Young convolution theorem (||J * @||;, < C||J||,2 ||@] . for any
p € [1,00]).
@ Combining the two interactions in the equation leads to energy
terms like

L L p(x=yD) (5 9) () = (U5 9) 1)) (9 (x) = ¢ () dyex.

@ Two essential (disjoint) regions of interaction:
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Part 2: The strong-to-weak interaction case

o Take for simplicity again A = (—A)g p, for I € (0,1) (namely
o (r) = Cqyr2=9), but if J € LL_, we have

B:LP(Q) — LP(Q) is bounded.

@ Indeed, since Bp (x) = (J*¢) (x) —a(x) ¢ (x) and a € L® (Q)), by
Young convolution theorem (||J * @||;, < C||J||,2 ||@] . for any
p € [1,00]).

@ Combining the two interactions in the equation leads to energy
terms like

L L p(x=yD) (5 9) () = (U5 9) 1)) (9 (x) = ¢ () dyex.

@ Two essential (disjoint) regions of interaction:

QO n{(xy)eQxQ:p(x—y|) <1}, p(r) = C4yr ?=7 has only a
weak effect on differences.
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Part 2: The strong-to-weak interaction case

o Take for simplicity again A = (—A)g p, for I € (0,1) (namely
o (r) = Cqyr2=9), but if J € LL_, we have

B:LP(Q) — LP(Q) is bounded.

@ Indeed, since Bp (x) = (J*¢) (x) —a(x) ¢ (x) and a € L® (Q)), by
Young convolution theorem (||J * @||;, < C||J||,2 ||@] . for any
p € [1,00]).

@ Combining the two interactions in the equation leads to energy
terms like

L L p(x=yD) (5 9) () = (U5 9) 1)) (9 (x) = ¢ () dyex.

@ Two essential (disjoint) regions of interaction:

QO n{(xy)eQxQ:p(x—y|) <1}, p(r) = C4yr ?=7 has only a
weak effect on differences.
Q@ n{xy)eQxQ:p(x—y|)>1},p0(r)=Cqr 29 hasa

dominanting effect.
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Part 2: The energy identity and estimates

Q Setting b(x, @) := a(x)@ + F'(¢), then for every € W32 (Q), a.e.
t € (0, T) we have

<§0tv¢> +5A (“I/l,lp) =0,
u=>b(x,¢)—J*¢ae inQ.

@ Use proper test functions ¢ to produce meaningful energy estimates!
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Part 2: The energy identity and estimates

Q Setting b(x, @) := a(x)@ + F'(¢), then for every € W32 (Q), a.e.
t € (0, T) we have

<§0tv¢> +5A (“I/l,lp) =0,
u=>b(x,¢)—J*¢ae inQ.

@ Use proper test functions ¢ to produce meaningful energy estimates!
@ Choose P = y and test the second equation by d¢¢:

= % <i /QXQJ(X—y)pr(X) —fp(y)|2dxdy+/QF(qo)dx>
+&a(1p)

where
_ Cay Ju (
€ // |x—y|d+2/ ddy
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Part 2: The energy identity and estimates

Assumptions on the potential F (Think of F'=fasa polynomial of
arbitrary growth).

@ There exist c; > 0, c; > 0 and p € (1, 2] such that
|F'(s)|P < calF(s)| + c, Vs € R.
@ Bounds on (0, T) with no sign assumption on J:
e l?0, T; Wy?(Q)), F(g)el>(0,T;L1(Q))
U J
d:¢ € L2(0, T; W, "2 (Q) ?

provided that ¢, € L? (Q)) and F (¢,) € L* (Q0).
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Part 2: The energy identity and estimates

e Boundson (0, T):

?

@ €L¥(0, T;L2(Q)) N L0, T; W,? (V).
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@ €L¥(0, T;L2(Q)) N L0, T; W,? (V).
e Why care?
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@ €L¥(0, T;L2(Q)) N L0, T; W,? (V).
e Why care?
120, T; W2 (Q)) N HY(0, T; Wy "2 (Q)) < 12(0, T; L2 (Q)).

@ A good approximation scheme requires strong convergence!
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Part 2: The energy identity and estimates

e Boundson (0, T):

?

@ €L¥(0, T;L2(Q)) N L0, T; W,? (V).
e Why care?
120, T; W2 (Q)) N HY(0, T; Wy "2 (Q)) < 12(0, T; L2 (Q)).

@ A good approximation scheme requires strong convergence!
o Recall b(x, @) := a(x)@ + F'(¢p), then for every p € Wy? (Q), ae.
t € (0, T) we have

<§0tv¢> +Ea(n,p) =0,
u=>b(x,¢)—J+g@ae inQ.
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Part 2: The energy identity and estimates

e Boundson (0, T):

)

@ €L¥(0, T;L2(Q)) N L0, T; W,? (V).
e Why care?
120, T; W2 (Q)) N HY(0, T; Wy "2 (Q)) < 12(0, T; L2 (Q)).

@ A good approximation scheme requires strong convergence!

o Recall b(x, @) := a(x)@ + F'(¢p), then for every p € Wy? (Q), ae.
t € (0, T) we have

<§0tv¢> +Ea(n,p) =0,
u=>b(x,¢)—J+g@ae inQ.

@ Key point: use test function i = ¢. But this requires dealing with
doubly interaction terms in 4 (i, ¢)!!!
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Part 2: The energy identity and estimates

@ The energy identity
L ey + € (. 9) = 0.
but = a(x)¢—J* @+ F (¢) and
Eatmg)= [ [ px=y) () =1 () (@) = 9 () dye

=h+h+k,

where

{ h:= foQP(|X_Y|)(a§X)+q
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Part 2: The energy identity and estimates

o Assume that a(x) + F (s) > ¢, ae. x€Q, s € R.
—> a(x) +qr (¢) > ¢ and so

hza [ [ plx=ylp(x) =) dydx = oa(p.9).
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Part 2: The energy identity and estimates

o Assume that a(x) + F (s) > ¢, ae. x€Q, s € R.
—> a(x) +qr (¢) > ¢ and so

hza [ [ plx=ylp(x) =) dydx = oa(p.9).

@ Thus we have

9oy + Iz < Ll + 11l
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Part 2: The energy identity and estimates

o Assume that a(x) + F (s) > ¢, ae. x€Q, s € R.
—> a(x) +qr (¢) > ¢ and so

hza [ [ plx=ylp(x) =) dydx = oa(p.9).

@ Thus we have

9oy + Iz < Ll + 11l

@ I, can be estimated like /5. Notice first

o (x=y1) (J%9) () = (I 9) (1)) (9 () = ¢ ) dyx
[ o (x=y1) (9(x) = @ (1) dydx

L[ px=yD) (U5 9) (x) = (S5 9) ())” dyax.
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Part 2: The energy identity and estimates

@ We split the last integral into two parts:

| [ x=y) (U 9) () = (I ) (1) dyx = A+ B,
where

{ A= Jo Jopeyz10 (k= y1) (U @) (x) = (I 9) () dydx,
B:= Jo Joupey <1 P (X =¥ (U @) (x) = (I ¢) () dydx.

x
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Part 2: The energy identity and estimates

@ We split the last integral into two parts:

| [ x=y) (U 9) () = (I ) (1) dyx = A+ B,
where

{ A= Jo Jopeyz10 (k= y1) (U @) (x) = (I 9) () dydx,
B:=Jq fQ;\Xfy|<1P (Ix =y (= @) (x) = (J * 9) (v))* dydx.

o Consider ¢, = ¢ and P ga\, = 0. Recall that p (r) = C4yr 42,

I €(0,1). We have
<2 [ [ ey (10%9) (P +1(9) 1)) aye

2 2
< 2)lpllopy. e (2101 191 li9l2)
2 2
< G101 I el
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Part 2: The energy identity and estimates

@ For the B-term, use the Young convolution theorem in RY, so

Bl< [ [ o0z (45 9) ()~ (U %) (z-+x))” da
k X) — k V4 X 2
S/Q/BICU ?) (x |<J 9) (z + >|) 2 ([2]) o

z|

1 2
S// (/ |VJ*(p(x+tz)|dt) 12| o (|z]) dzdx
OJB; 0
1
< VI (x+tz)]* |z dtdzd
< Jo o [ V590t ) |2 o (1) deazo

1
<NV w1280 U20) 191 e oz
1

1
< |5d—1| HJH%/VM(]Rd) (/0 deP (r) dr) ||(P||i2(0)

= Co[Sa-1] Ml warrey 19llL2(r) -
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Part 2: The energy identity and estimates

o Key assumption: J € W/! (R?). We have derived

loc

HﬁﬂHLz + a9l < Cllgllq)

which implies

@ e L®(0,T;L2(Q), ¢ € L0, T; Wy? (Q)).
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Part 2: The strong-to-weak interaction case

Theorem

Let ¢, € L? (Q)) such that F(g,) € L'(Q) and suppose the previous
assumptions on F,J. Then, for every T > 0 there exists a (unique) weak
solution ¢ satisfying the weak formulation. Furthermore, the following
energy identity holds for any t > 0,

Nlg @)+ [ I (0)lfge T = Mgy)

and the functions t — ||¢ (t)||i2(0) and t — (F (¢ (1)), 1)L2(Q) are
absolutely continuous on [0, T]. Here, we have

N(@) =73 [ Jc=plotx) — o) Pasdy + [ Flg)ax
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Part 2: The strong-to-weak interaction case, further results

@ Regularity of weak solutions: existence of strong solutions! = finite
dimensional global attractors!

[§ C.G. Gal, Doubly nonlocal Cahn-Hilliard equations. Annales Henry
Poincare Nonlin. Anal. (2017), to appear.
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Part 2: The strong-to-weak interaction case, further results

@ Regularity of weak solutions: existence of strong solutions! = finite
dimensional global attractors!

@ Convergence to a single steady state:
¢ (t) = ¢, in LT (QQ) -topology

where
a(x)p,—Jd*x¢, +F (¢,) = const. in Q.

[§ C.G. Gal, Doubly nonlocal Cahn-Hilliard equations. Annales Henry
Poincare Nonlin. Anal. (2017), to appear.
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Many open questions

The weak-to-weak interaction case when both p, J € L1 (]Rd) .

loc

The weak-to-strong interaction case when p € L} (RY) and
J¢ L. (RY).

loc

F is a singular (log) potential in all cases of interaction.
Further regularity of weak solutions: ¢ € CP/28((0, T) x Q) ?

Either one of the nonnegative kernels K, J is not radially symmetric.
What happens?

The case O = RY.

@ Numerical treatment? None but fundamental issue!l
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Any questions???
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