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The classical form of the CHE

Cahn and Hilliard 1958: model for (isothermal) phase separation
phenomena in materials made of two components.

∂tϕ+ div (M) = 0, µ = �∆ϕ+ F 0 (ϕ) , in Ω� (0,∞) .

ϕ is the relative di¤erence of the two phases with �1 corresponding
to pure phases; ϕ 2 (�1, 1) corresponds to the transition in the
interface between the two material phases.
Mass �ux M = �m (ϕ)rµ; m is mobility, µ is called the chemical
potential and is determined as

Eloc (ϕ) =
Z

Ω

�
1
2
jrϕj2 � θc ϕ2 + θF (ϕ)

�
dx ,

assuming
M � ν = rϕ � ν = 0 on ∂Ω� (0,∞) ;

No phase separation when θ > θc but only when θ < θc (The early
stages of the universe)!!!
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The classical form of the CHE

F is a logarithmic (bounded in R) potential

F (r) = (1+ r) log (1+ r) + (1� r) log (1� r)

often replaced by a regular (unbounded in R) polynomial F (r) = r4.

Conservation of "mass":

d
dt

Z
Ω

ϕ (t, x) dx = 0)
Z

Ω
ϕ (t, x) dx =

Z
Ω

ϕ (0, x) dx .

Real-world applications:

either m (r) � m0 > 0 or m (r) = m0
�
1� r2

�
, r 2 [�1, 1] .
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The classical form of the CHE

Constant mobility case:

1 Cher�ls-Miranville-Zelik 2011 (survey paper).
2 Global well-posedness of weak (energy) solutions: Debussche-Dettori
1995 (F is logarithmic), Elliott 1989 (F is polynomial),
Kenmochi-Niezgodka-Pawlow 1995 (both polynomial and
logarithmic).

3 Regularity and global longtime behavior: Miranville-Zelik 2004,
Abels-Wilke 2007 (F is logarithmic).

Degenerate mobility:

1 Existence result for a weak (energy) solution: Elliott-Garcke 1996 (F
is logarithmic).

2 Uniqueness and regularity still open issues!!!
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Is the classical form general enough?

Derivation of the classical CHE is purely phenomenological!!!
Cahn-Hilliard 1958, Gurtin 1996 (second law)

It does not arise from a microscopic particle system (such as the Ising
model) in a suitable limit!

Giacomin-Lebowitz 1997 =) nonlocal version of CHE.

Eloc occurs as a �rst order-approximation of the nonlocal free energy

Enonloc (ϕ) =
1
4

Z
Ω

Z
Ω
J (x � y) jϕ(x)� ϕ(y)j2dxdy

+
Z

Ω
θF (ϕ)� θc ϕ2dx ,

where
θc :=

1
2

Z
Ω
J(x � y)dy .
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Is the classical form general enough?

Run simulation of Ising particle model:

https://www.youtube.com/watch?v=kjwKgpQ-l1s
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Is the classical form general enough?

The nonlocal CHE reads

∂tϕ+ div (M) = 0, µ = a(x)ϕ� J � ϕ+ F 0 (ϕ) , in Ω� (0,∞) ,

where

(J � ϕ)(x) :=
Z

Ω
J(x � y)ϕ(y)dy , a(x) :=

Z
Ω
J(x � y)dy .

Interaction between particles is re�ected through a symmetric
J.Assume again

M � ν = 0 on ∂Ω� (0,∞) .
We still have conservation of mass!
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The nonlocal CHE of Giacomin-Lebowitz 1997

Fact
The NCHE =) (second-order) quasi-linear equation:

∂tϕ+r � (m (ϕ) q (x , ϕ)rϕ+m (ϕ)raϕ�m (ϕ)rJ � ϕ) = 0,
q (x , ϕ) = a (x) + F

00
(ϕ) .
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The nonlocal CHE of Giacomin-Lebowitz 1997

Degenerate mobility: m (r) = m0/F
00
(r) = m0

�
1� r2

�
,

r 2 [�1, 1] .

1 Well-posedness of weak (energy) solutions: Gajewski-Zacharias 2003,
S. Frigeri-Grasselli-Rocca 2015.

2 Some regularity and long-time behavior: Gal-Grasselli 2014,
Londen-Petzeltova 2011.

3 m (r) F
00
(r) � m0. Maximal Lp -regularity

(Giorgini-Frigeri-Gal-Grasselli 2017) =) complete picture!!!

Constant mobility: m (r) = m0 > 0.

1 Regular polynomial potential F : well-posedness (Bates-Han 2005,
Colli-Frigeri-Grasselli 2012), long-time behavior (Gal-Grasselli 2014,
Frigeri-Gal-Grasselli 2016).

2 Logarithmic potential F : maximal Lp-regularity and long-term
behavior (Giorgini-Gal-Grasselli 2017: 2D results only) 3D case still
open!!!
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Why doubly nonlocal CHE?

Particle transport obeys Fick�s law of di¤usion: M = �m (ϕ)rϕ.
Assume m is constant!

Then the nonlocal CHE is equivalent to

∂tϕ+ Aµ = 0, µ = Bϕ+ F 0 (ϕ) , in Ω� (0,∞) ,

where

A = �∆N (The Neumann Laplacian on Ω),

Bϕ = a(x)ϕ� J � ϕ =
Z

Ω
J(x � y) (ϕ (x)� ϕ(y)) dy ,

provided that J 2 L1loc and symmetric.
Multiscale heterogeneous environment Ω: Neumana-Tartakovsky
2009, Vlahos-Isliker-Kominis-Hizonidis 2008;

anamolous (nonlocal) transport law replaces local one!
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Why doubly nonlocal CHE?

The classical conservation law ∂tϕ+div(M) = 0 must be replaced by
a nonlocal formulation for mass transport:

∂tϕ+ Aµ = 0,

where

Aµ = P.V.
Z

Ω
K (x � y) (µ(y)� µ (x)) dy

def
= lim

ε!0+

Z
ΩnBε(x )

K (x � y) (µ(y)� µ (x)) dy .

Contrast to previous analysis: µ is only measurable (with no
assumed a priori regularity!).

K encodes the physical properties of the environment Ω in a manner
in which mass is being transported throughout Ω.
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assumed a priori regularity!).

K encodes the physical properties of the environment Ω in a manner
in which mass is being transported throughout Ω.
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The doubly nonlocal CHE

The doubly nonlocal CHE reads (more generally) as

∂tϕ+ Aµ = 0, µ = Bϕ+ F
0
(ϕ) in Ω� (0,∞) .

where

Aµ = P.V.
Z

Ω
K (x � y) (µ(y)� µ (x)) dy ,

Bϕ = P.V.
Z

Ω
J(x � y) (ϕ(y)� ϕ (x)) dy .

K (x , y) = ρ (jx � y j) and J (x) = J (�x), we classify:

1 the strong-to-weak interaction case: ρ /2 L1loc
�
Rd
�
, J 2 L1loc

�
Rd
�
;

2 the weak-to-weak interaction case: ρ, J 2 L1loc
�
Rd
�
;

3 The weak-to-strong interaction case: ρ 2 L1loc
�
Rd
�
, J /2 L1loc

�
Rd
�
;

4 The strong-to-strong interaction case: ρ, J /2 L1loc
�
Rd
�
.

(Institute) Phase-transitions with anomalous di¤usion May, 2019 13 / 42



The doubly nonlocal CHE

The doubly nonlocal CHE reads (more generally) as

∂tϕ+ Aµ = 0, µ = Bϕ+ F
0
(ϕ) in Ω� (0,∞) .

where

Aµ = P.V.
Z

Ω
K (x � y) (µ(y)� µ (x)) dy ,

Bϕ = P.V.
Z

Ω
J(x � y) (ϕ(y)� ϕ (x)) dy .

K (x , y) = ρ (jx � y j) and J (x) = J (�x), we classify:

1 the strong-to-weak interaction case: ρ /2 L1loc
�
Rd
�
, J 2 L1loc

�
Rd
�
;

2 the weak-to-weak interaction case: ρ, J 2 L1loc
�
Rd
�
;

3 The weak-to-strong interaction case: ρ 2 L1loc
�
Rd
�
, J /2 L1loc

�
Rd
�
;

4 The strong-to-strong interaction case: ρ, J /2 L1loc
�
Rd
�
.

(Institute) Phase-transitions with anomalous di¤usion May, 2019 13 / 42



The doubly nonlocal CHE

The doubly nonlocal CHE reads (more generally) as

∂tϕ+ Aµ = 0, µ = Bϕ+ F
0
(ϕ) in Ω� (0,∞) .

where

Aµ = P.V.
Z

Ω
K (x � y) (µ(y)� µ (x)) dy ,

Bϕ = P.V.
Z

Ω
J(x � y) (ϕ(y)� ϕ (x)) dy .

K (x , y) = ρ (jx � y j) and J (x) = J (�x), we classify:

1 the strong-to-weak interaction case: ρ /2 L1loc
�
Rd
�
, J 2 L1loc

�
Rd
�
;

2 the weak-to-weak interaction case: ρ, J 2 L1loc
�
Rd
�
;

3 The weak-to-strong interaction case: ρ 2 L1loc
�
Rd
�
, J /2 L1loc

�
Rd
�
;

4 The strong-to-strong interaction case: ρ, J /2 L1loc
�
Rd
�
.

(Institute) Phase-transitions with anomalous di¤usion May, 2019 13 / 42



The doubly nonlocal CHE

The doubly nonlocal CHE reads (more generally) as

∂tϕ+ Aµ = 0, µ = Bϕ+ F
0
(ϕ) in Ω� (0,∞) .

where

Aµ = P.V.
Z

Ω
K (x � y) (µ(y)� µ (x)) dy ,

Bϕ = P.V.
Z

Ω
J(x � y) (ϕ(y)� ϕ (x)) dy .

K (x , y) = ρ (jx � y j) and J (x) = J (�x), we classify:

1 the strong-to-weak interaction case: ρ /2 L1loc
�
Rd
�
, J 2 L1loc

�
Rd
�
;

2 the weak-to-weak interaction case: ρ, J 2 L1loc
�
Rd
�
;

3 The weak-to-strong interaction case: ρ 2 L1loc
�
Rd
�
, J /2 L1loc

�
Rd
�
;

4 The strong-to-strong interaction case: ρ, J /2 L1loc
�
Rd
�
.

(Institute) Phase-transitions with anomalous di¤usion May, 2019 13 / 42



The doubly nonlocal CHE

The doubly nonlocal CHE reads (more generally) as

∂tϕ+ Aµ = 0, µ = Bϕ+ F
0
(ϕ) in Ω� (0,∞) .

where

Aµ = P.V.
Z

Ω
K (x � y) (µ(y)� µ (x)) dy ,

Bϕ = P.V.
Z

Ω
J(x � y) (ϕ(y)� ϕ (x)) dy .

K (x , y) = ρ (jx � y j) and J (x) = J (�x), we classify:

1 the strong-to-weak interaction case: ρ /2 L1loc
�
Rd
�
, J 2 L1loc

�
Rd
�
;

2 the weak-to-weak interaction case: ρ, J 2 L1loc
�
Rd
�
;

3 The weak-to-strong interaction case: ρ 2 L1loc
�
Rd
�
, J /2 L1loc

�
Rd
�
;

4 The strong-to-strong interaction case: ρ, J /2 L1loc
�
Rd
�
.

(Institute) Phase-transitions with anomalous di¤usion May, 2019 13 / 42



The doubly nonlocal CHE

The doubly nonlocal CHE reads (more generally) as

∂tϕ+ Aµ = 0, µ = Bϕ+ F
0
(ϕ) in Ω� (0,∞) .

where

Aµ = P.V.
Z

Ω
K (x � y) (µ(y)� µ (x)) dy ,

Bϕ = P.V.
Z

Ω
J(x � y) (ϕ(y)� ϕ (x)) dy .

K (x , y) = ρ (jx � y j) and J (x) = J (�x), we classify:

1 the strong-to-weak interaction case: ρ /2 L1loc
�
Rd
�
, J 2 L1loc

�
Rd
�
;

2 the weak-to-weak interaction case: ρ, J 2 L1loc
�
Rd
�
;

3 The weak-to-strong interaction case: ρ 2 L1loc
�
Rd
�
, J /2 L1loc

�
Rd
�
;

4 The strong-to-strong interaction case: ρ, J /2 L1loc
�
Rd
�
.

(Institute) Phase-transitions with anomalous di¤usion May, 2019 13 / 42



Part 1: The strong-to-strong interaction case

Fix s 2 (0, 1) , and set

L(Ω) := fu : Ω ! R measurable,
Z

Ω

ju(x)j
(1+ jx j)d+2s dx < ∞g.

Regional fractional Laplacian (�∆)sΩ:

(�∆)sΩu(x) = P.V. Cd ,s
Z

Ω

(u (x)� u (y))
jx � y jd+2s dy , x 2 Ω, u 2 L(Ω).

Possible boundary conditions: Neumann BCs of "fractional" type as
well as Dirichlet BCs (for the sake of presentation):

u = 0 on ∂Ω.

(�∆)sΩ,D = realization of (�∆)sΩ on L2(Ω) with the Dirichlet
boundary condition. We have

Dom((�∆)sΩ,D ) = fu 2 W s ,2
0 (Ω), (�∆)sΩu 2 L2(Ω)g

(�∆)sΩ,Du = (�∆)sΩu.
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Part 1: The strong-to-strong interaction case

Here, W s ,2
0 (Ω) = D (Ω)W

s ,2

with

kuk2W s ,2 =
Cd ,s
2

Z
Ω

Z
Ω

ju (x)� u (y)j2

jx � y jd+2s dxdy +
Z

Ω
ju (x)j2 dx

= : EA (u, u) + kuk2L2(Ω) .

Note W s ,2
0 (Ω) � L2q (Ω) with

q = d
d�2s if d > 2s and any q 2 (1,∞) if d � 2s, and

W s ,2
0 (Ω)

c
,! L2 (Ω) .

It can be proven that

Dom((�∆)sΩ,D ) � L∞ (Ω) if s >
d
4
.
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Part 1: The strong-to-strong interaction case

Recall the doubly nonlocal CHE in abstract form reads

∂tϕ+ Aµ = 0, µ = Bϕ+ F
0
(ϕ) in Ω� (0,∞) .

F is a polynomial potential, i.e., F (r) = θr4 � θc r2.

Table:

Model Classical CHE Doubly nonlocal CHE, case (4)
A �∆Ω,N (�∆)s1Ω,D , s1 2 (0, 1)
B �∆Ω,N (�∆)s2Ω,D , s2 2 (0, 1)

Table:

Model CHE: anamolous transport CHE: nonlocal strong energy
A (�∆)sΩ,D , s 2 (0, 1) �∆Ω,N
B �∆Ω,N (�∆)sΩ,D , s 2 (0, 1)
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Part 1: The strong-to-strong interaction case

Our approach:

1 Concept of (energy) bilinear forms and associated di¤usion operators
A,B.

2 Ω need not be smooth (for instance, Ω is a bounded domain with
Lipschitz continuous boundary).

3 Examples: A,B may be associated with classical operators (such as
∆Ω,D ,∆Ω,N ) or nonlocal ones!

Results:

1 Well-posedness of weak and strong solutions;
2 Regularity and long-time behavior in terms of �nite dimensional
global attractors.
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Part 1: The strong-to-strong interaction case

For simplicity, let A := (�∆)lΩ,D , B := (�∆)sΩ,D , for s, l 2 (0, 1) .

The elliptic problem:

Bu (x) + f (u (x)) = h (x) , x 2 Ω,

where h 2 Lp (Ω) for some p > 1. Here, f = F 0 2 C 1 (R) is a
nonlinear function which satis�es

f (t)t � α0t2 � α1, f
0
(t) � �α2. for all t 2 R, jtj � t0,

Here α0 > 0, α1, α2 � 0; t0 > 0 is large enough.
We say that u is a bounded generalized solution if
u 2 W s ,2

0 (Ω) \ L∞ (Ω) and

EB (u, v) +
Z

Ω
f (u (x)) v (x) dx =

Z
Ω
h (x) v (x) dx ,

for all v 2 W s ,2
0 (Ω) .
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Part 1: The strong-to-strong interaction case

Theorem

Under the above assumptions on f , there is at least one bounded solution
provided that h 2 Lp (Ω) with p > d

2s . Moreover, we have

kukL∞(Ω) � C
�
1+ khkLp (Ω)

�
,

for some constant C > 0 independent of u and h.

Corollary

Under the same assumptions, if h 2 Lp (Ω) \ L2 (Ω), then
u 2 D (B) \ L∞ (Ω) such that

kBukL2(Ω) � Q
�
1+ khkLp (Ω)\L2(Ω)

�
,

for some function Q > 0 independent of u and h.
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Strong solutions

Energy space

Z =
n
(u0, µ0) 2 D(B)�W

l ,2
0 (Ω)

o
, D(B) = D((�∆)sΩ,D )

with norm (with respect to the pair (u0, µ0)),

ku0k2Z = ku0k
2
D (B ) + kµ0k

2
W l ,2 ,

where µ0 is computed via the equation

µ0 = Bu0 + f (u0) in Ω.
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Strong solutions

De�nition

Let 0 < T < +∞ be given. We say u is a strong solution if u, µ satisfy

u 2 L∞(0,T ;D(B) \ L∞ (Ω)), ∂tu 2 L2(0,T ;W s ,2
0 (Ω)),

µ 2 L∞(0,T ;W l ,2
0 (Ω)) \ L2 (0,T ;D (A)) .

In particular, for the strong solution we have ∂tu = �Aµ, a.e. in
Ω� (0,T ) and µ = Bu + f (u), a.e. in Ω� (0,T ).
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Strong solutions

1 Regularized version/problem for (u, µ) =
�
uε,α, µε,α

�
:

∂tu = �Aµ, µ = α∂tu + Bu + fε (u) , ((Pε,α))

where
n
fε = F

0
ε

o
is such that fε ! f uniformly on compact intervals

of R, with the property that jf 0ε (s) j � cf ,ε.

2 Existence of a strong solution to (Pε,α) by a backward
(�nite-di¤erence) Euler scheme.

3 Derive uniform estimates and pass to the limit as (ε, α)! (0, 0) .
4 Main assumption on F 2 C 2 (R), (Hf-1): limjs j!∞ F (s) = ∞ and
for some cF , c1 > 0, c2 � 0,

F
0
(s)s � c1s2 � c2 and f

0
(s) = F 00(s) � �cF , for all s 2 R.
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of R, with the property that jf 0ε (s) j � cf ,ε.
2 Existence of a strong solution to (Pε,α) by a backward
(�nite-di¤erence) Euler scheme.

3 Derive uniform estimates and pass to the limit as (ε, α)! (0, 0) .
4 Main assumption on F 2 C 2 (R), (Hf-1): limjs j!∞ F (s) = ∞ and
for some cF , c1 > 0, c2 � 0,

F
0
(s)s � c1s2 � c2 and f

0
(s) = F 00(s) � �cF , for all s 2 R.
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Strong solutions

Theorem

Let (u0, µ0) 2 Z for some s > d
4 . Then there exists at least one strong

solution in the sense of de�nition.
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Weak solutions

Weak energy space

Y =
n
u 2 W s ,2

0 (Ω) : F (u) 2 L1 (Ω)
o

with the following metric

d (u1, u2) = ku1 � u2kW s ,2
0
+

����ZΩ
F (u1)� F (u2) dx

����1/2

.

Two more assumptions on F :
(Hf-2) There exists a constant cf > 0 and p 2 (1, 2] such that

jf (s)jp � cf (jF (s)j+ 1) , for all s 2 R.

(Hf-3) There exist C1 > 0, C2 � 0 and p 2 (1, 2] such that

F (s) � C1 js jp/(p�1) � C2, for all s 2 R.

F (s) = θs4 � θc s2 satis�es (Hf-1)-(Hf-3) with p = 4/3 (and so
p := p/ (p � 1) = 4).

(Institute) Phase-transitions with anomalous di¤usion May, 2019 24 / 42



Weak solutions

Weak solution: u0 2 Y and u satis�es

u 2 L∞(0,T ;Y ), ∂tu 2 L2(0,T ;W�l ,2
0 (Ω)),

µ 2 L2(0,T ;W l ,2
0 (Ω)),

F (u) 2 L∞ �0,T ; L1 (Ω)� , f (u) 2 L∞ (0,T ; Lp (Ω))

De�nition

for every v 2 W s ,2
0 (Ω) \ Lp (Ω) , ω 2 W l ,2

0 (Ω), a.e. t 2 (0,T ) we
have

h∂tu (t) ,ωi+ EA (µ (t) ,ω) = 0,
EB (u (t) , v) + hf (u (t)) , vi = (µ (t) , v) .

We have u(0) = u0 in Ω.
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Weak solutions

Energy identity: test with ω = µ and v = ∂tu in L2 (Ω) and add the
resulting equations:

d
dt

�
EB (u (t) , u (t)) +

Z
Ω
F (u (t)) dx

�
+ EA (µ (t) , µ (t)) = 0.

It is justi�able for strong solutions un, with (u0n, µ0n) 2 Z .
Approximate u0 2 Y by a sequence (u0n, µ0n) 2 Z .
Use the energy identity to control the solutions uniformly with respect
to n! ∞.
Pass to the limit in n using the uniform (weak) energy bounds.
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Weak solutions

Theorem

Let F satisfy the assumptions (Hf-1), (Hf-2), (Hf-3) and assume s > d
4 .

For every initial datum u0 2 Y , there exists at least one weak solution in
the sense of the previous de�nition. Moreover,

u 2 L∞ �0,T ; Lp (Ω)� , for any T > 0.
Problem

It may be possible to remove the condition s > d
4 (recall that

B = (�∆)sΩ,D , s 2 (0, 1)) by using further perturbation arguments!
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Part 2: The strong-to-weak interaction case

The doubly nonlocal CHE reads (more generally) as

∂tϕ+ Aµ = 0, µ = Bϕ+ F
0
(ϕ) in Ω� (0,∞) .

where

Aµ = P.V.
Z

Ω
K (x � y) (µ(y)� µ (x)) dy ,

Bϕ = P.V.
Z

Ω
J(x � y) (ϕ(y)� ϕ (x)) dy .

K (x , y) = ρ (jx � y j) and J (x) = J (�x), we classify:

1 the strong-to-weak interaction case: ρ /2 L1loc
�
Rd
�
, J 2 L1loc

�
Rd
�
;

2 the weak-to-weak interaction case: ρ, J 2 L1loc
�
Rd
�
;

3 The weak-to-strong interaction case: ρ 2 L1loc
�
Rd
�
, J /2 L1loc

�
Rd
�
;

4 The strong-to-strong interaction case: ρ, J /2 L1loc
�
Rd
�
.
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Part 2: The strong-to-weak interaction case

Take for simplicity again A = (�∆)lΩ,D , for l 2 (0, 1) (namely
ρ (r) = Cd ,l r�2l�d ), but if J 2 L1loc , we have

B : Lp (Ω)! Lp (Ω) is bounded.

Indeed, since Bϕ (x) = (J � ϕ) (x)� a (x) ϕ (x) and a 2 L∞ (Ω) , by
Young convolution theorem (kJ � ϕkLp � C kJkL1 kϕkLp , for any
p 2 [1,∞]).
Combining the two interactions in the equation leads to energy
terms likeZ

Ω

Z
Ω

ρ (jx � y j) ((J � ϕ) (x)� (J � ϕ) (y)) (ϕ (x)� ϕ (y)) dydx .

Two essential (disjoint) regions of interaction:

1 In f(x , y) 2 Ω�Ω : ρ (jx � y j) � 1g, ρ (r) = Cd ,l r�2l�d has only a
weak e¤ect on di¤erences.

2 In f(x , y) 2 Ω�Ω : ρ (jx � y j) � 1g , ρ (r) = Cd ,l r�2l�d has a
dominanting e¤ect.
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Part 2: The energy identity and estimates

De�nition
1 Setting b(x , ϕ) := a(x)ϕ+ F 0(ϕ), then for every ψ 2 W l ,2

0 (Ω) , a.e.
t 2 (0,T ) we have

hϕt ,ψi+ EA (µ,ψ) = 0,
µ = b (x , ϕ)� J � ϕ a.e. in Ω.

Use proper test functions ψ to produce meaningful energy estimates!

1 Choose ψ = µ and test the second equation by ∂t ϕ:

0 =
d
dt

�
1
4

Z
Ω�Ω

J(x � y)jϕ(x)� ϕ(y)j2dxdy +
Z

Ω
F (ϕ)dx

�
+ EA (µ, µ)

where

EA (µ, µ) =
Cd ,l
2

Z
Ω

Z
Ω

ju (x)� u (y)j2

jx � y jd+2l dxdy .
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Part 2: The energy identity and estimates

Assumptions on the potential F (Think of F
0
= f as a polynomial of

arbitrary growth).

There exist c1 > 0, c2 � 0 and p 2 (1, 2] such that

jF 0(s)jp � c1jF (s)j+ c2, 8s 2 R.

Bounds on (0,T ) with no sign assumption on J:

µ 2 L2(0,T ;W l ,2
0 (Ω)), F (ϕ) 2 L∞ �0,T ; L1 (Ω)�

+ +
∂tϕ 2 L2(0,T ;W�l ,2

0 (Ω)) ?

provided that ϕ0 2 L2 (Ω) and F (ϕ0) 2 L1 (Ω) .
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Part 2: The energy identity and estimates

Bounds on (0,T ):

ϕ
?
2 L∞ �0,T ; L2 (Ω)� \ L2(0,T ;W l ,2

0 (Ω)).

Why care?

L2(0,T ;W l ,2
0 (Ω)) \H1(0,T ;W�l ,2

0 (Ω))
c
,! L2(0,T ; L2 (Ω)).

A good approximation scheme requires strong convergence!
Recall b(x , ϕ) := a(x)ϕ+ F 0(ϕ), then for every ψ 2 W l ,2

0 (Ω) , a.e.
t 2 (0,T ) we have

hϕt ,ψi+ EA (µ,ψ) = 0,
µ = b (x , ϕ)� J � ϕ a.e. in Ω.

Key point: use test function ψ = ϕ. But this requires dealing with
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Part 2: The energy identity and estimates

The energy identity
1
2
d
dt
kϕk2L2(Ω) + EA (µ, ϕ) = 0,

but µ = a (x) ϕ� J � ϕ+ F
0
(ϕ) and

EA (µ, ϕ) =
Z

Ω

Z
Ω

ρ (jx � y j) (µ (x)� µ (y)) (ϕ (x)� ϕ (y)) dydx

= I1 + I2 + I3,

where8<: I1 :=
R

Ω

R
Ω ρ (jx � y j) (a (x) + qF (ϕ)) (ϕ (x)� ϕ (y))2 dydx ,

I2 :=
R

Ω

R
Ω ρ (jx � y j) (a (x)� a (y)) ϕ (y) (ϕ (x)� ϕ (y)) dydx ,

I3 :=
R

Ω

R
Ω ρ (jx � y j) ((J � ϕ) (x)� (J � ϕ) (y)) (ϕ (x)� ϕ (y)) dydx

and we have set

qF (ϕ) :=
F
0
(ϕ (x))� F 0 (ϕ (y))

ϕ (x)� ϕ (y)
.
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Part 2: The energy identity and estimates

Assume that a (x) + F
00
(s) � c0, a.e. x 2 Ω, s 2 R.

=) a (x) + qF (ϕ) � c0 and so

I1 � c0
Z

Ω

Z
Ω

ρ jx � y j (ϕ (x)� ϕ (y))2 dydx = c0EA (ϕ, ϕ) .

Thus we have

1
2
d
dt
kϕk2L2(Ω) + c0 kϕk2W s ,2

0
� jI2j+ jI3j ;

I2 can be estimated like I3. Notice �rst

I3 =
Z

Ω

Z
Ω

ρ (jx � y j) ((J � ϕ) (x)� (J � ϕ) (y)) (ϕ (x)� ϕ (y)) dydx

� c0
4

Z
Ω

Z
Ω

ρ (jx � y j) (ϕ (x)� ϕ (y))2 dydx

+
1
c0

Z
Ω

Z
Ω

ρ (jx � y j) ((J � ϕ) (x)� (J � ϕ) (y))2 dydx .
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Part 2: The energy identity and estimates

We split the last integral into two parts:Z
Ω

Z
Ω

ρ (jx � y j) ((J � ϕ) (x)� (J � ϕ) (y))2 dydx = A+ B,

where(
A :=

R
Ω

R
Ω:jx�y j�1 ρ (jx � y j) ((J � ϕ) (x)� (J � ϕ) (y))2 dydx ,

B :=
R

Ω

R
Ω:jx�y j<1 ρ (jx � y j) ((J � ϕ) (x)� (J � ϕ) (y))2 dydx .

Consider eϕjΩ = ϕ and eϕjRd nΩ = 0. Recall that ρ (r) = Cd ,l r�d�2l ,
l 2 (0, 1). We have

jAj � 2
Z

Ω

Z
Ω:jx�y j�1

ρ (jx � y j)
�
j(J � ϕ) (x)j2 + j(J � ϕ) (y)j2

�
dydx

� 2 kρkL∞[1,∞)

�
2 jΩj kJk2L1 kϕk2L2

�
� Cρ jΩj kJk2L1 kϕk2L2 .
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Part 2: The energy identity and estimates

1 For the B-term, use the Young convolution theorem in Rd , so

jB j �
Z

Ω

Z
B1

ρ (jz j) ((J � ϕ) (x)� (J � ϕ) (z + x))2 dzdx

�
Z

Ω

Z
B1

�
j(J � ϕ) (x)� (J � ϕ) (z + x)j

jz j

�2
jz j2 ρ (jz j) dzdx

�
Z

Ω

Z
B1

�Z 1

0
jrJ � ϕ (x + tz)j dt

�2
jz j2 ρ (jz j) dzdx

�
Z

Rd

Z
B1

Z 1

0
jrJ � eϕ (x + tz)j2 jz j2 ρ (jz j) dtdzdx

� krJk2L1(Rd )

Z
B1

Z 1

0
jz j2 ρ (jz j) keϕk2L2(Rd ) dtdz

� jSd�1j kJk2W 1,1(Rd )

�Z 1

0
rd+1ρ (r) dr

�
kϕk2L2(Ω)

= C ρ jSd�1j kJk2W 1,1(Rd ) kϕk2L2(Ω) .
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Part 2: The energy identity and estimates

Key assumption: J 2 W 1,1
loc

�
Rd
�
. We have derived

d
dt
kϕk2L2(Ω) + c0 kϕk2W s ,2

0
� C kϕk2L2(Ω) .

which implies

ϕ 2 L∞ �0,T ; L2 (Ω)� , ϕ 2 L2(0,T ;W l ,2
0 (Ω)).
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Part 2: The strong-to-weak interaction case

Theorem

Let ϕ0 2 L2 (Ω) such that F (ϕ0) 2 L1(Ω) and suppose the previous
assumptions on F , J. Then, for every T > 0 there exists a (unique) weak
solution ϕ satisfying the weak formulation. Furthermore, the following
energy identity holds for any t � 0,

N (ϕ (t)) +
Z t

0
kµ (τ)k2W s ,2

0
dτ = N (ϕ0)

and the functions t 7! kϕ (t)k2L2(Ω) and t 7! (F (ϕ (t)) , 1)L2(Ω) are
absolutely continuous on [0,T ]. Here, we have

N (ϕ) = 1
4

Z
Ω�Ω

J(x � y)jϕ(x)� ϕ(y)j2dxdy +
Z

Ω
F (ϕ)dx .
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Part 2: The strong-to-weak interaction case, further results

1 Regularity of weak solutions: existence of strong solutions! =) �nite
dimensional global attractors!

2 Convergence to a single steady state:

ϕ (t)! ϕ� in L
∞ (Ω) -topology

where
a (x) ϕ� � J � ϕ� + F

0
(ϕ�) = const. in Ω.

C.G. Gal, Doubly nonlocal Cahn-Hilliard equations. Annales Henry
Poincare Nonlin. Anal. (2017), to appear.
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Many open questions

The weak-to-weak interaction case when both ρ, J 2 L1loc
�
Rd
�
.

The weak-to-strong interaction case when ρ 2 L1loc
�
Rd
�
and

J /2 L1loc
�
Rd
�
.

F is a singular (log) potential in all cases of interaction.
Further regularity of weak solutions: ϕ 2 C β/2,β((0,T )�Ω) ?
Either one of the nonnegative kernels K , J is not radially symmetric.
What happens?

The case Ω = Rd .

Numerical treatment? None but fundamental issue!
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Any questions???
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