

The HPC cluster and how to use it Eric Spangler

ΤМ

Accessing the HPC's cluster

- Windows
 - Putty (As your terminal)
 - WinScp (for transferring information between your computer and the cluster)
 - Alternatives (Cygwin, MobaXterm, mRemoteNG, Xshell, Bitvise, VNC, etc...)

- Mac OS X and Linux
 - Built in commands
 - ssh (As your terminal)
 - scp (for transferring data between your computer and the cluster)
 - Usually have to enable ssh port to utilize the commands
- Hostname is 'hpclogin.memphis.edu'
- X2go can be used to connect to the cluster with a desktop environment (XFCE)
- On Mac and Linux, open terminal and type:
 - 'ssh [username]@penguin.memphis.edu'
- Can only access it on campus or through the campus VPN off campus
 - http://www.memphis.edu/its/network/vpn.php

HPC Terminal

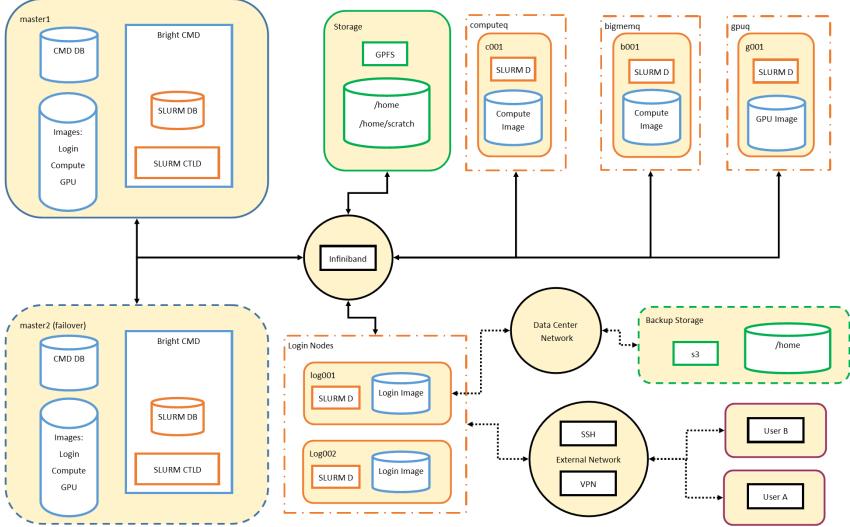
V of

- BASH (Borne Again Shell)
 - Case sensitive
 - 'ls', 'Ls', 'lS', and 'LS' are all different commands
 - Special characters can change the interpretation of a command
 - I suggest you avoid using spaces, ~, ?, <, >, &, \, %,and * characters in your file names
 - If you have to, use C style escape sequences, such as '\&' for &.
 - Special sequences:
 - 'command > [filename]' creates a new file with results of command
 - 'command >> [filename]' appends a file with results of command
 - 'command ~' tilde (~) is a shortcut to home directory
 - Many more, just look up BASH documentation

- Basic file system commands:
 - 'ls' list directory contents
 - 'cd [directoryName]' change directory to directory name
 - 'pwd' print working directory
 - 'mkdir [directoryName]' make a directory from within the current directory
 - 'cat [filename]' display what is in file
 - 'head [filename]' display first 10 lines of file
 - 'tail [filename]' display last 10 lines of file
 - 'cp [filename1] [filename2]' copy a file to another file
 - 'mv [filename1] [filename2]' move a file to another file
 - Basic File editors:
 - 'vi [filename]' the VIM file editor
 - 'emacs [filename]' the EMACS file editor
 - 'nano [filename]' the Nano file editor

HPC Cluster

- 92 Nodes
 - 2 'master' nodes for SLURM scheduler
 - 2 'login' nodes for submitting jobs
 - 78 'computeq' nodes
 - 2x20 Core Intel Xeon[®] Gold 6148 CPUs
 - 192 GB DDR4 RAM (2666 MHz, 6 Channels per CPU)
 - EDR Infiniband (100 Gb/s, 610 ns latency)
 - 6 'gpuq' nodes
 - Same as 'computeq'
 - And 2 NVIDIA Tesla[®] V100 GPUs with 5120 'cores' and 16 GB RAM per GPU
 - 4 'bigmemq' nodes
 - Same CPUs and Infiniband as 'computeq'
 - 2 nodes have 768 GB of RAM each
 - 2 nodes have 1536 GB of RAM each


HPC Cluster

- Storage
 - DDN GS7K GRIDScalar[®] (GPFS)
 - Connected through Infiniband @ 8.5 GB per second
 - Contains 120x4 TB Drives (480 TB Raw, 348 TB Available)
 - Mounted as /home (this is backed up through S3)
 - Mounted as /home/scratch (this is not backed up)
 - Archive (S3 StorageGRID[®])
 - This is connected through the data center network (Ethernet)
 - Contains >1 PB
 - Users can also archive their own data here (contact <u>hpcadmins@memphis.edu</u>)
 - Uses AWS commands, very slow @ ~100-500 MB per second

HPC Cluster

HPC Software

- Usually installed in /cm/shared/public/apps or /public/apps
- Usually has a module associated with it:
 - 'module avail' to see available modules
 - 'module load modulename' to load module
 - 'module list' to see currently loaded modules
- If a particular software isn't present, please contact <u>hpcadmins@memphis.edu</u>
- Commonly used:
 - GCC/Intel compilers 'module load gcc/7.2.0' or 'module load intel'
 - MATLAB 'module load matlab'
 - Python 'module load python/2.7.15' or 'module load python/3.7.0'
 - CUDA 'module load cuda92' only on 'gpuq' nodes

SLURM

- HPC cluster uses SLURM for job scheduling
 - 'sbatch' command to submit batch jobs
 - 'srun' command to submit interactive jobs
 - 'salloc' and 'sattach' to allocate a job and attach to any job
 - 'squeue' to view running and pending jobs
 - 'scancel' to cancel running and pending batch jobs
 - 'sacct' to view completed and failed jobs
 - 'scontrol' to view or modify submitted jobs
 - 'sacctmgr' to view account resources
 - 'sprio' to view pending job's priority
 - 'sshare' to view current user's fairshare priority

SLURM Partitions

- 'computeq' is for general CPU bound jobs
 - This is our largest partition
 - 4.8 GB RAM per CPU core
- 'gpuq' is for general GPU bound jobs
 - This uses '-gres=gpu:N' for submissions
 - 4.8 GB RAM per CPU core
- 'bigmemq' is for general memory bound jobs
 - 38.4 GB RAM per CPU core
 - 76.8 GB RAM per CPU core

SLURM Accounting

- You can submit jobs only under your account
- We create a default account for every new user
 - This account is part of a tree:
 - Cluster \rightarrow uom \rightarrow college \rightarrow department \rightarrow content area \rightarrow lab
 - Users are part of the lab branches
 - Coordinators (usually the PI) can modify any job submitted to their lab account
 - We have restrictions on this account:
 - Users: 1024 CPU cores, 3 TB RAM
 - Accounts: Fairshare Algorithm+priority weights
 - These restrictions may change at any time due to load/reservations/problems

SLURM Priority

- Jobs are assigned a priority when they are submitted where:
 - Priority=Fairshare+JobSize+Age+Partition+QOS+Nice+TRES
- Fairshare Priority:
 - Limits users and accounts to a fraction of active cluster jobs
 - Fairshare priority penalty decays over 24 hours
- JobSize Priority:
 - Larger jobs have higher priority (Fairshare can negate this)
 - Shorter jobs have higher priority
- Age
 - Longer pending times increase Age priority
- Partition (currently 0)

SLURM Priority (cont)

- Jobs are assigned a priority when they are submitted where:
 - Priority=Fairshare+JobSize+Age+Partition+QOS+Nice+TRES
- QOS (quality of service)
 - Each job has a normal QOS currently (0)
- Nice
 - Administrative (we increase this if a job has scheduling difficulties)
- TRES (Trackable RESources)
 - Each resource (CPU and Memory) has just 1 weight
 - GPU (for --gres) has a very high weight

SLURM Batch Scripts

- Typically BaSH shell script (can use TK/TCL)
 - '#!/bin/bash' header for bash
 - '#!/usr/bin/tclsh' header for tcl
- 'sbatch' options can be added with special comment:
 - '#SBATCH option'
- Built in SLURM environment variables:
 - '\$SLURM_SUBMIT_DIR' for full path of submission directory
 - '\$SLURM_JOBID'
 - '\$SLURM_ARRAY_TASK_ID'
 - Try 'man sbatch' for more details

SLURM Jobs

- Minimum requirements:
 - Partition ('--partition', '-p')
 - CPUs, tasks, or nodes
 - '--cpus-per-task' or '-c' for multiple threads/cores per a node/task (pthreads/OpenMP)
 - '--ntasks' or '-n' for multiple message passing tasks (MPI)
 - '--nodes' or '-N' for multiple nodes (MPI)
 - Time ('--time' or '-t')
 - Memory
 - '--mem-per-cpu' for memory per CPU core
 - '--mem' for memory per node

SLURM Jobs

- Useful options:
 - Job name ('--job-name' or '-J') for identification in 'squeue'
 - Job array ('--array' or '-a') for many job submissions
 - E-mail job status ('--mail-user' and '--mail-type')
 - Tasks per node ('--ntasks-per-node') for requesting a specific number of tasks per node (MPI/OpenMP hybrid)
 - Output and error ('--output' or '-o' and '--error' or '-e') to redirect script standard output and error ('stdout' and 'stderr')
 - Generic RESource ('--gres') used for gpus, licenses, and interconnects

SLURM Job Examples