
  

  

Abstract— The heart rhythms, controlled by the autonomic 
nervous system, can fluctuate with varying cognitive loads that 
can be captured with electrocardiogram (ECG) and heart rate 
variability (HRV) metrics. In this paper, we report 
customization of a wireless, ambulatory NeuroMonitor device 
originally developed for collecting electroencephalogram (EEG) 
signals as a platform for ECG and HRV data collection. The 
overall gain is altered to 93.86, while the band pass filter was 
set to 0.5 Hz to 126 Hz. The four independent inputs were 
connected to left arm, right arm, left leg and right leg. ECG 
signal and HRV data was collected during relax state and 
elevated cognitive load conditions. The signals were digitized at 
256 sps and wirelessly transmitted to a remote computer for 
analysis. These cardiac signals were filtered and plotted using 
MATLAB. We demonstrate successful data collection that 
enables multiple applications of NeuroMonitor platform as an 
ambulatory physiological parameter monitoring hardware for 
long duration study of patients in natural settings.  

I. INTRODUCTION 

     Electrocardiogram (ECG) and heart rate variability 
(HRV) is an important factor for quantitative estimation of 
autonomic nervous system function [1]. Neural response 
along with cardiac signal analysis might be co-analyzed for a 
complete physiological state of a patient suffering from 
neurological disorder like epilepsy [2], as well as other 
disorders such as sleep disorder, or generic strong mental 
states including scare, stress, joy, or hypertension. Ongoing 
research aims to establish an understanding of the effect of 
major depression on cardiac morbidity, or to relate R-R 
signal analysis during complex partial seizures [3]. 
Alteration to autonomic function such as a reduction in HRV 
can impair the body’s capacity to cope with challenging 
situations of elevated stress, such as seizures [4]. Many 
neurological disorders should co-analyze 
Electroencephalography (EEG) with ECG and/or HRV, for 
instance, to perform complete physiological evaluation 
before treatment [2]. A simple, noninvasive cardiovascular 
evaluation may identify an alternative diagnosis in many 
patients, including patients with apparent epilepsy symptom. 
Algorithms for seizure detection and prediction are primarily 
based on neuronal responses such as electroencephalogram 
(EEG) [5-6], but incorporating cardiac signals in complete 
assessment might be beneficial.  
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Cognitive load such as mental stress, happiness and 
depression might have influence to the neuronal signals that 
would affect the rhythms of the heart, causing HRV. For 
instance, the vagal (high frequency [HF]) component of 
heart rate variability (HRV) predicts survival in post-
myocardial infarction patients and is considered to reflect 
vagal antagonism of sympathetic influences [7]. Neuronal 
correlation to vagal tone involves mental stress tasks that 
include cognitive and emotional elements. Thus, for many 
diagnosis and prognosis of neuronal disorders, neuronal 
responses such as EEG should be co-analyzed with cardiac 
signals such as ECG and HRV. 
   Traditionally, EEG and ECG signals are recorded with 
completely different types of equipment. This is especially 
problematic for patient monitoring in home (or outdoor) for 
long duration. With a vision of patient-centric healthcare for 
future generation, it will be particularly useful to be able to 
collect both EEG and ECG simultaneously using the same 
device. We previously have demonstrated our in-house 
developed “NeuroMonitor” device that can capture EEG 
data from 4-monopolar or 2-bipolar montage [8]. In this 
paper, we demonstrate that the developed NeuroMonitor 
device is also able to capture ECG signals by slightly 
altering the analog front end (AFE) to record ECG signals 
using 3 electrodes method. The captured data can be stored 
to the onboard microSD card or be transferred to a remote 
device like a smart phone or a computer. Collected ECG 
data can be analyzed to determine HRV and cognitive load. 
The uniqueness of this work is, we demonstrate that the 
same hardware platform can be utilized for both EEG and 
ECG signal collection, thus can be of practical benefit and 
usability for simple monitoring system development for 
home (or outdoor) monitoring of patient. This also 
demonstrates the potential for simultaneous collection of 
EEG and ECG data by increasing the number of channels of 
the NeuroMonitor platform for co-analysis. A photograph of 
the NeuroMonitor device is shown in Fig. 1. 

II. HARDWARE DESCRIPTION 

The NeuroMonitor [8] platform is a custom developed 
embedded device that consists of an analog data acquisition 
unit, a filtering unit, a programmable microcontroller, a 
Bluetooth communication module, and a few other 
components as depicted in Fig. 2. The printed circuit board 
(PCB) was designed and validated by Cadence Allegro SPB 
15.5 (Cadence Design Systems, Inc., San Jose, CA, USA) 
and measures only 5.58cm X 2.03cm X 0.91cm, and was 
fabricated through Advanced Circuits (Aurora, CO, USA). 
This section describes different sections of the hardware. 
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Figure 1.  Photograph of the NeuroMonitor device (Originally developed 

for ambulatory EEG data collection [8]) alongside a USA quarter. 

A. Analog Data Acquisition 
The device has 4 independent inputs to obtain data from 

the electrodes. In this work, 3 of these 4 inputs have been 
utilized to obtain ECG data. Those 3 electrodes are connected 
to left arm (LA), right arm (RA) and left leg (LL). Right leg 
(RL) electrode is used here as a reference which is connected 
to the ground of the device. An instrumentation amplifier 
(ISL28270, Intersil Americas, Milpitas, CA, USA) obtains 
signal from Lead I and Lead II. . A 496 mV reference voltage 
was added to the reference pin of the instrumentation 
amplifier. A gain of 26.5 was set to amplify the signal before 
filtering. Unipolar power supply of 3.3 V powers the device 
from a 900 mAh rechargeable Li-Ion battery. 

B. Filtering Stage 
Three analog filters were implemented in this 

NeuroMonitor device. A notch filter (fc = 60 Hz) is used to 
remove the utility power line interference from buffered 
signals. However, the implemented notch filter is measured 
to have the cutoff frequency at 58.5 Hz due to mismatch in 
PCB traces, component tolerances, and parasitic such as 
resistances, capacitors and inductance from the traces. 

After removing the utility power interference using the 
notch filter, a two-stage (active 2nd order chebyshev-I with a 
gain of 1.61 and a passive 2nd order) low-pass filter with cut 
off frequency of 126 Hz was used as an anti-aliasing filter. A 
high pass filter immediately follows with a cutoff frequency 
at 0.5 Hz that removes DC offset related to slowly varying 
artifacts such as muscle movement and baseline wandering 
from the signal. Finally, a DC offset is added using the 
microcontroller-housed digital-to-analog converter (DAC) 
after the high pass filter to offset the signal for maximizing 
range and proper sampling by the microcontroller-housed 
analog-to-digital converter (ADC). 

C. Amplification Stage  
A final amplification using a non-inverting amplifier 

having a gain of 2.2 was incorporated in the hardware, which 
results an overall gain of 93.86 for ECG measurement. Note 
that the original overall gain of NeuroMonitor for EEG 
measurement was 703 [8]. 

D. Microcontroller Unit (MCU) 
The processing unit of this device is a Programmable 

System On a Chip (PSoC-3) embedded microcontroller 
(Model: CY8C3866LTI-030, Cypress Semiconductor Corp., 
San Jose, CA, USA) that implements Intel’s 8051 MCU 
architecture, operating at 67 MHz with 64 kB of flash 
memory and 8 KB of SRAM. The PSoC contains both analog 

and digital components ranging from operational amplifiers, 
FAT32/UART/USB controllers, ADC, DAC, analog 
multiplexors, digital filters, registers, capacitors, timer, etc. 
The components can be routed internally (programmable) 
and has been maximally utilized in this design. Due to the 
availability of both analog and digital components, the PCB 
footprint was less as the component count was minimized. 
The average power required during data acquisition and 
simultaneous transmission of data via Bluetooth was 135 
mW. All components were surface mount type (SMT). The 
device weighs only 27g (excluding battery and electrodes). 
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Figure 2.  Block diagram of dataflow path of the NeuroMonitor device 
used for ECG data collection. 

E. Bluetooth Transceiver  
A Bluetooth transceiver (Model: RN-42, Roving 

Networks, Los Gatos, CA, USA) was used to transfer data 
wirelessly to a remote computer. This low-power Bluetooth 
module consumes 3 mA during sniff mode, and 25 mA 
during normal operation, peaking at 45 mA when 
transmitting. The sniff period is set to 100 ms to optimize 
power consumption. The frequency band of this wireless 
module is the ISM (2.4GHz - 2.5GHz). This Class-2 module 
can transmit data up to 20 m. The baud rate of the UART 
communication is 115.2 kbps, while the Baud rate of Serial 
Port Profile (SPP) for the Bluetooth was set to 300 kbps. 

F. Other Components 
The device has the ability to be configured to operate in  

online or offline modes. In online mode, the Bluetooth is 
used to transfer data continuously to monitor the subject in 
real-time. For offline mode, a microSD card is included 
within the platform that can store weeklong ECG data. The 
board also implements a microUSB port to communicate 
with a computer, as well as to recharge the Li-Ion battery. 
The device can operate up to 90 h with interrupt driven 
clocking based power optimization technique in a single 
charge with a 900 mAh Li-Ion battery (described elsewhere). 

III. DATA PROCESSING 

ECG data has been captured with 3-electrode (RA, LA, 
RL) method, and processed using MATLAB (Mathworks 
Inc., Natick, MA, USA). By using this method, 6 different 
types of ECG signals are obtained with HRV analysis of a 
subject under different cognitive loads. Lead I (I), Lead II 
(II), Lead III (III), augmented vector right (aVR), augmented 
vector left (aVL) and augmented vector foot (aVF) signals 
are given below respectively: 

    I = LA - RA                                                 (1) 

    II = LL - RA                                                (2) 

    III = LL – LA = II - I                                   (3) 
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   aVR= RA- ½(LA+LL)= - (I + II)/2              (4) 

   aVL = LA - ½(RA+LL) = I - II/2                 (5) 

   aVF = LL - ½(RA+LA) = II - I/2                 (6) 

A.  Data Processing in MCU 
The MCU has a delta-sigma ADC to convert the analog 

data to digital. A single sample operation mode is used with 
16 bit resolution to capture Lead I and Lead II data. The 
sampling rate is controlled by a timer that generates an 
interrupt every 3.9 ms (sampling rate of 256 sps). When the 
timer generates the interrupt, the  microcontroller executes 
interrupt service routine (ISR) where ADC conversion starts 
by calling an application programming interface (API).  

After the successful completion of a conversion of Lead I, 
the digital data is saved into a temporal variable. ADC data 
conversion is stopped to prevent the leakage between 
samples, and then the analog multiplexer is switched to the 
other channel to obtain Lead II ECG data. Lead II ECG is 
saved to another 16-bit variable and the conversion of the 
ADC is stopped. The analog multiplexer is then switched 
back to Lead I position so that the system is ready for the 
next interrupt. 
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Figure 3.  Flow chart of software for real-time data collection with the 
microcontroller of the NeuroMonitor device. 

Two 16-bit variables are split into 4 bytes.  Two 8-bit 
wide arrays (buffers) of size 512 Byte each is used to 
temporarily store these values. Two flags are used as mutex 
to check which array is full. If the array is not full, then data 
is saved in the same array. When the array is full, then a flag 
is set, and data is saved in the other array. 

When saving the data to the arrays, the lower significant 
byte of the Lead I data are saved first and the higher 
significant byte of Lead I in the next consecutive address. For 
the data from Lead II, the same scheme is used. When the 
array is full, the data will be transferred wirelessly through 
the Bluetooth module to a remote computer, which is 
implemented in the main loop of the firmware. It requires 

35.55 ms to transmit one complete array of 512 B, whereas to 
fill one array (buffer), it requires 499.2 ms – satisfying the 
latency timing constraint. The complete flow chart of the 
MCU data processing is shown in Fig. 3. 

B. MATLAB Data Processing 
MATLAB is used to receive, analyze, and display the 

results. A simulated serial communication using a COM port 
is used to read the data incoming from the NeuroMonitor 
device. Data is then divided in Lead I and Lead II. The data is 
then converted to mV using eq. (7) and eq. (8). 

     Lead I = ((Chan1)*3.3*1000) / (65536*93.28)             (7) 
     Lead II = ((Chan2)*3.3*1000) / (65536*93.28)            (8)    
          
Lead I and Lead II data have been filtered in MATLAB for 
clearer results using an IIR notch filter with a quality factor 
of 200. Then, a Parks-McClellan optimal FIR low pass filter 
of order 250 with a cut off frequency of 54 Hz is used.  

After filtering the Lead I and Lead II signal, equation (3)-
(6) is used to obtain Lead III, aVR, aVL and aVF ECG 
signals. Finally, the 6 ECG signals are plotted in MATLAB. 
HRV is also calculated and plotted from Lead I data. The 
complete flow chart for MATLAB data processing is shown 
in Fig. 4. 
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Figure 4.  Flow chart for MATLAB data processing. 

IV. RESULTS 

A 2 mVpp sinusoidal signal at 5 Hz was used as input to 
both channels for testing the functionality of the data 
acquisition stage. Data was then transferred to a remote 
computer and analyzed in MATLAB. The frequency and the 
amplitude were functionally verified. 

For practical data capture testing, ECG data collection 
from four (N = 4) individuals (subjects) were performed for 
this pilot study. Representative results from Lead I and Lead 
II ECG data of Subject 1 are shown in Fig. 5 along with the 
filter responses in different stages, while Lead III, aVR, aVL 
and aVF ECG data are shown in Fig. 6. 

From the collected ECG data, HRV for time-domain 
method can be computed as standard deviation of the average 
NN intervals (SDANN) over a short period. Heartbeat per 
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minute (BPM) can be computed by dividing 60 with the 
interval between two consecutive heartbeats in seconds. HRV 
represents the physiological phenomenon of variation in the 
time interval between heartbeats. 

 
Figure 5.  Lead I and Lead II ECG data before and after filtering 

Data for the study of HRV under cognitive load condition 
was collected from another subject. ECG is recorded during 
relax situation for some time then a scary video is played. A 
timer was set to track the timing when the subject is scared. 
ECG data is analyzed after the experiment. A window of 10 
seconds ECG data is plotted during relaxes and stress 
conditions. HRV is also plotted in Fig. 7. It can be observed 
that the BPM of the subject increases under stress compared 
to relax condition indicating higher cognitive load. 

 
Figure 6.  Lead III, aVR, aVL and aVF ECG data. 

 

Figure 7.  ECG and Heart rate variability beat per minute (bpm) of a 
subject under cognitive load. 

V. CONCLUSION 
In this work, we have demonstrated that the previously 

developed NeuroMonitor platform for EEG data collection 
can also be utilized for ECG data acquisition by altering the 
bias voltages and gain of amplifiers. The device could 
capture continuous ECG data and allows HRV monitoring of 
a patient during normal daily activities, as the device is 
small, ambulatory, allows wireless connectivity or on-board 
storage, and operates for a long duration. The study shows 
increase of BPM (from ~80 at rest to ~95 under stress) 
representative of the state of the mind of the subject.  

Simultaneous EEG and ECG can be captured with the 
NeuroMonitor platform by adding 3 channels for ECG in 
addition to EEG channels. Compared to commercially 
available ECG or EEG devices, this platform has advantages 
of size, weight, power consumptions, functionality and 
computing ability. Future research directions could include 
co-analysis of alpha and beta band activities obtained from 
EEG data collected from prefrontal cortex combined with 
simultaneous HRV and cognitive load analytics from ECG 
data to strengthen the ability to non-invasively determine the 
physiological states of the subject under various conditions 
with distinct mental tasks in an unsupervised or minimally-
supervised environment. 
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